Vortex Glass—Vortex Liquid Transition in BaFe2(As1-xPx)2 and aKFe4As4 Superconductors from Multi-Harmonic AC Magnetic Susceptibility Studies

Int. J. Mol. Sci. 2023, 24, 7896

Authors: Ion Ivan, Alina M. Ionescu, Daniel N. Crisan and Adrian Crisan

Abstract: For practical applications of superconductors, understanding the vortex matter and dynamics is of paramount importance. An important issue in this context is the transition of the vortex glass, which is a true superconducting phase, into a vortex liquid phase having a linear dissipation. By using multi-harmonic susceptibility studies, we have investigated the vortex glass—vortex liquid phase transitions in CaKFe4As4 and BaFe2 (As0.68P0.32)2 single crystals. The principle of our method relates the on-set of the third-harmonic susceptibility response with the appearance of a vortex-glass phase in which the dissipation is non-linear. Similar to the high-critical temperature cuprate superconductors, we have shown that even in these iron-based superconductors with significant lower critical temperatures, such phase transition can be treated as a melting in the sense of Lindemann’s approach, considering an anisotropic Ginzburg-Landau model. The experimental data are consistent with a temperature-dependent London penetration depth given by a 3D XY fluctuations model. The fitting parameters allowed us to extrapolate the vortex melting lines down to the temperature of liquid hydrogen, and such extrapolation showed that CaKFe4As4 is a very promising superconducting material for high field applications in liquid hydrogen, with a melting field at 20 K of the order of 100 T.

DOI: https://doi.org/10.3390/ijms24097896

Categories:

Tags: