Laboratory for Materials Simulations, and National Centre for Computational **Design and Discovery of Novel Materials (MARVEL), Paul Scherrer Institut,** Villigen, Switzerland

PAUL SCHERRER INSTITUT

1st European School on Superconductivity and Magnetism in Quantum Materials

Modeling magnetic materials using advanced DFT functionals: Hubbard, hybrids, meta-GGA, and van der Waals

Iurii Timrov

MARVEL NATIONAL CENTRE OF COMP<mark>ETENCE IN RESEA</mark>RC

22 April 2024

A word of introduction

2004 - 2009

Taras Shevchenko National University of Kyiv (Ukraine)

BSc & MSc degrees with honours

Theoretical physics

2009 - 2013

École polytechnique (France)

PhD degree in physics with honours

Supervisor: Dr. Nathalie Vast

DFT, pump-probe experiments, EELS

2013 - 2016

Scuola Internazionale Superiore di Studi Avanzati (Italy)

Postdoctoral researcher

Advisor: Prof. Stefano Baroni

TDDFT: absorption spectroscopy, magnetic excitations

2016 - 2023

École polytechnique fédérale de Lausanne (Switzerland)

Senior research scientist (2021 - present)

Advisor: Prof. Nicola Marzari

DFT+U+V, phonons, complex materials

A word of introduction

Paul Scherrer Institut

- Named after the Swiss nuclear physicist Paul Scherrer (1890 1969) \bigcirc
- Was created in 1988 by merging two institutes, Swiss Federal Institute for Reactor Research (1960) and Swiss Institute for Nuclear Research (1968).

Facts about the Paul Scherrer Institut

- climate, health innovation and fundamentals of nature
- source and the Swiss research infrastructure for particle physics CHRISP
- PSI employs 2200 people
- Every year, more than 2500 scientists from Switzerland and around the world come to PSI to use our unique facilities to carry out experiments that are not possible anywhere else.
- Annual budget of approximately EUR 430 million

• PSI is the largest research institute for natural and engineering sciences in Switzerland

Conducting cutting-edge research in four main fields: future technologies, energy and

 PSI develops, builds and operates complex large research facilities: Swiss Light Source SLS, the free-electron X-ray laser SwissFEL, the SINQ neutron source, the SµS muon

Director: Christian Rüegg

Large-scale facilities at PSI

Laboratory for Materials Simulations

- Was created in 2021
- Part of the new Division for Scientific Computing, Theory and Data (SCD)
- The Laboratory currently hosts three groups: Materials Software and Data group, Multiscale Materials Modelling group, and Light Matter Interaction group
- 22 people (the lab grows fast)
- Mission: to develop, integrate, and disseminate in the PSI community and the scientific community at large the computational capabilities required to understand, predict, and characterize materials as studied at PSI research facilities with photons, neutrons, muons, and electrons

Lab head: Nicola Marzari

Arosa (Grisons, Switzerland), 27th December 1925

"At the moment I am struggling with a new atomic theory. I am very optimistic about this thing and expect that if I can only... solve it, it will be very beautiful"

Erwin Schrödinger

The Nobel Prize in Chemistry 1998

John A. Pople (1925 - 2004)

Walter Kohn (1923 - 2016)

The Nobel Prize in Chemistry 1998 was divided equally between Walter Kohn "for his development of the density-functional theory" and John A. Pople "for his development of computational methods in quantum chemistry"

Most cited papers in the history of the American Physical Society (from 1893)

	Journal	# cites	Title	Author(s)
1	PRL (1996)	78085	Generalized Gradient Approximation Made Simple	Perdew, Burke, Ernzerhof
2	PRB (1988)	67303	Development of the Colle-Salvetti Correlation-Energy	Lee, Yang, Parr
3	PRB (1996)	41683	Efficient Iterative Schemes for Ab Initio Total-Energy	Kresse and Furthmuller
4	PR (1965)	36841	Self-Consistent Equations Including Exchange and Correlation	Kohn and Sham
5	PRA (1988)	36659	Density-Functional Exchange-Energy Approximation	Becke
6	PRB (1976)	31865	Special Points for Brillouin-Zone Integrations	Monkhorst and Pack
7	PRB (1999)	30940	From Ultrasoft Pseudopotentials to the Projector Augmented	Kresse and Joubert
8	PRB (1994)	30801	Projector Augmented-Wave Method	Blochl
9	PR (1964)	30563	Inhomogeneous Electron Gas	Hohenberg and Kohn
10	PRB (1993)	19903	Ab initio Molecular Dynamics for Liquid Metals	Kresse and Hafner
11	PRB (1992)	17286	Accurate and Simple Analytic Representation of the Electron	Perdew and Wang
12	PRB (1990)	15618	Soft Self-Consistent Pseudopotentials in a Generalized	Vanderbilt
13	PRB (1992)	15142	Atoms, Molecules, Solids, and Surfaces - Applications of the	Perdew, Chevary,
14	PRB (1981)	14673	Self-Interaction Correction to Density-Functional Approx	Perdew and Zunger
15	PRB (1986)	13907	Density-Functional Approx. for the Correlation-Energy	Perdew
16	RMP (2009)	13513	The Electronic Properties of Graphene	Castro Neto et al.
17	PR (1934)	12353	Note on an Approximation Treatment for Many-Electron Systems	Moller and Plesset
18	PRB (1972)	11840	Optical Constants on Noble Metals	Johnson and Christy
19	PRB (1991)	11580	Efficient Pseudopotentials for Plane-Wave Calculations	Troullier and Martins
20	PRL (1980)	10784	Ground-State of the Electron-Gas by a Stochastic Method	Ceperley and Alder

The top 100 papers

12 papers on density functional theory in the top-100 most cited papers in the entire scientific, medical, engineering literature, ever.

Nature, Oct 2014

From a many-body to a one-body problem

 $\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_N)$

- electrons
- interaction
 - external potential $v_{ext}(\mathbf{r})$

$$n(\mathbf{r}) = \sum_{i}^{occ} \int |\Psi_i(\mathbf{r}, \mathbf{r}_2, ..., \mathbf{r}_N)|^2 d\mathbf{r}_2 ... d\mathbf{r}_i$$

 $\varphi(\mathbf{r})$

Kohn-Sham particles
(non-interacting)
effective potential $v_{KS}(\mathbf{r})$

$$n(\mathbf{r}) = \sum_{i}^{occ} |\varphi_i(\mathbf{r})|^2$$

11

Hohenberg-Kohn theorems

Theorem I

density $n_0(\mathbf{r})$.

Theorem II

defined, valid for any external potential $V_{ext}(\mathbf{r})$:

$E_{HK}[n] = F_{HK}[n]$

is the exact ground state density $n_0(\mathbf{r})$.

For any system of interacting particles in an external local potential $V_{ext}(\mathbf{r})$, the potential $V_{ext}(\mathbf{r})$ is determined uniquely, except for a constant, by the ground state particle

A universal functional for the energy $E_{HK}[n]$ in terms of the density $n(\mathbf{r})$ can be

$$[n] + \int V_{ext}(\mathbf{r}) n(\mathbf{r}) d\mathbf{r},$$

where $F_{HK}[n]$ is a universal functional of the density which does not depend on $V_{ext}(\mathbf{r})$. For any particular $V_{ext}(\mathbf{r})$, the exact ground-state energy of the system is the global minimum value of the functional $E_{HK}[n]$, and the density $n(\mathbf{r})$ that minimizes this functional

Density-functional theory

Kohn-Sham equation:

$$\left(-\frac{\hbar^2}{2m_0}\nabla^2 + V_{KS}(\mathbf{r})\right)\varphi_i(\mathbf{r}) = \varepsilon_i\,\varphi_i(\mathbf{r})$$

$$V_{KS}(\mathbf{r}) = V_H(\mathbf{r}) + V_{xc}(\mathbf{r}) + V_{ext}(\mathbf{r})$$

= $e^2 \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \underbrace{\frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}}_{?} + V_{ext}(\mathbf{r})$

Density-functional theory

Kohn-Sham equation:

$$\left(-\frac{\hbar^2}{2m_0}\nabla^2 + V_{KS}(\mathbf{r})\right)\varphi_i(\mathbf{r}) = \varepsilon_i\,\varphi_i(\mathbf{r})$$

$$V_{KS}(\mathbf{r}) = V_H(\mathbf{r}) + V_{xc}(\mathbf{r}) + V_{ext}(\mathbf{r})$$

= $e^2 \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \underbrace{\frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}}_{?} + V_{ext}(\mathbf{r})$

Local density approximation (LDA):

$$E_{\rm xc}^{LDA}[n] = \int \varepsilon_{\rm xc}^{hom}(n(\mathbf{r})) n(\mathbf{r}) \, d\mathbf{r}$$

Generalized-gradient approximation (GGA):

$$E_{\rm xc}^{GGA}[n] = \int \varepsilon_{\rm xc}(n({\bf r}), \nabla n({\bf r})) n({\bf r}) \, d{\bf r}$$

PBE, PBEsol, ...

Some drawbacks of LDA / GGA

Self-interaction errors

- Consequences: over-delocalization of electrons (d and f) - incorrect description of charge transfer - incorrect energetics of chemical reactions - underestimation of band gaps

- . . .

Lack of non-locality

- Consequences: incorrect description of weak long-range (van der Waals) interactions - inadequate description of bond breaking and formation
 - no Rydberg series

- ...

Some advanced exchange-correlation functionals

Hubbard functionals (DFT+*U*, DFT+*U*+*V*,...)

Advanced functionals

meta-GGA (TPSS, SCAN, r2SCAN...)

Hybrid functionals (B3LYP, PBE0, HSE06,...)

van der Waals (DFT-D, DFT-D3, TS, rVV10, ...)

Self-interaction error

the approximate exchange-correlation energy terms

felt by each electron

Hartree potential $\longrightarrow V_H(\mathbf{r}) = e^2$

An electron interacts with itself \longrightarrow self-interaction (unphysical)

Self-interaction errors arrise from an incomplete cancellation of self-Coulomb terms by

$$2 \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$
 total charge density

Self-interaction error

The simplest example: the dissociation of H_2^+

The problem: approximate DFT gives only one solution - equal splitting of the charge

Perdew, Parr, Levy, Balduz, PRL (1982).

Self-interaction error

The simplest example: the dissociation of H_2^+

The problem: approximate DFT gives only one solution - equal splitting of the charge

Perdew, Parr, Levy, Balduz, PRL (1982).

Origin of the problem: self-interaction error (spurious quadratic energy change when adding/removing a fraction of an electron)

Cohen, Mori-Sanchez, Yang, Science (2008).

17

Li_{0.5}FePO₄

Li_{0.5}FePO₄

Fe²⁺: 3d⁶

Li_{0.5}FePO₄

Self-interaction error

Fe-3d electrons are delocalized and spread around

Wrong average oxidation state of 2.5+ for Fe ions

Spurious quadratic energy change when adding/removing a fraction of an electron to Fe

Li_{0.5}FePO₄

Self-interaction error

Fe-3d electrons are delocalized and spread around

Wrong average oxidation state of 2.5+ for Fe ions

Hubbard functionals

V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991)

Hubbard functionals

DFT+U:
$$E = E_{\text{DFT}} + \frac{1}{2} \sum_{I,\sigma} U^{I} \operatorname{Tr} \left[(\mathbf{1} - \mathbf{n}^{I\sigma}) \mathbf{n}^{I\sigma} \right] \quad (\mathbf{n}^{I\sigma})_{m_{1}m_{2}} = \sum_{i} f_{i} \langle \psi_{i\sigma} | \varphi_{m_{2}}^{I} \rangle \langle \varphi_{m_{1}}^{I} \rangle$$

Anisimov et al., PRB (1991). Liechtenstein et al., PRB (1995).

Dudarev et al., PRB (1998).

on-site localisation (U)

Hubbard functionals

DFT+U:
$$E = E_{\text{DFT}} + \frac{1}{2} \sum_{I,\sigma} U^I \operatorname{Tr} \left[(\mathbf{1} - \mathbf{n}^{I\sigma}) \mathbf{n}^{I\sigma} \right] \quad (\mathbf{n}^{I\sigma})_{m_1m_2} = \sum_i f_i \langle \psi_{i\sigma} | \varphi_{m_2}^I \rangle \langle \varphi_{m_1}^I \rangle$$

Anisimov et al., PRB (1991).

Liechtenstein et al., PRB (1995).

$$E = E_{\text{DFT}} + \frac{1}{2} \sum_{I,\sigma} \boldsymbol{U}^{\boldsymbol{I}} \operatorname{Tr} \left[\left(\mathbf{1} - \mathbf{n}^{I\sigma} \right) \mathbf{n}^{I\sigma} \right] - \frac{1}{2} \sum_{I,J,\sigma} \boldsymbol{V}^{\boldsymbol{I}\boldsymbol{J}} \operatorname{Tr} \left[\mathbf{n}^{IJ\sigma} \mathbf{n}^{JI\sigma} \right]$$

Campo Jr and Cococcioni, JPCM (2010).

Dudarev et al., PRB (1998).

When do we need Hubbard corrections?

Alkali metals Halogens period Noble gas group Alkaline-earth metals Transition metals Rare-earth and lantha Other metals н 2 Actinoid e Other nonmetals 3 2 Li Be 11 12 3 Na Mg 6 3 5 7 8 4 19 21 22 23 24 25 26 20 4 κ Ca Sc Ti Mn V Cr Fe 42 43 44 39 40 41 37 38 5 Rb Nb Тс Sr Y Zr Мо Ru 55 57 72 74 75 76 56 73 6 Cs Ba Hf Та W Re La Os 87 88 89 107 108 104 105 106 7 Fr Rf Bh Hs Ra Db Sg Ac

Periodic table of the elements

_	58	59	60	61	62	63	64	65	66	67	68	69	70	71
6	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
-	90	91	92	93	94	95	96	97	98	99	100	101	102	103
'	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

lanthanoid series

actinoid series

C	6	2	c	
Э	C	-	•	

elements (21, 39, 57–71)									
anoid elements (57–71 only)									
				13	14	15	16	17	Не
element	S			5	6	7	8	9	10
				В	С	Ν	0	F	Ne
				13	14	15	16	17	18
9	10	11	12	AI	Si	Р	S	CI	Ar
27	28	29	30	31	32	33	34	35	36
Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
45	46	47	48	49	50	51	52	53	54
Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
77	78	79	80	81	82	83	84	85	86
lr	Pt	Au	Hg	ТΙ	Pb	Bi	Ро	At	Rn
109	110	111	112	113	114	115	116	117	118
Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

When do we need Hubbard corrections?

Periodic table of the elements

lanthanoid s	series 6
--------------	----------

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
)	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
,	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

actinoid series 7

Answer: For elements with partially filled *d* and/or *f* electrons

C	6	2	c		
5	C	7	ŝ	5	

n elements (21, 39, 57–71)										
anoid elements (57–71 only) 2										
				13	14	15	16	17	Не	
element	:S			5	6	7	8	9	10	
				В	С	Ν	0	F	Ne	
				13	14	15	16	17	18	
9	10	11	12	AI	Si	Р	S	CI	Ar	
27	28	29	30	31	32	33	34	35	36	
Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
45	46	47	48	49	50	51	52	53	54	
Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I.	Хе	
77	78	79	80	81	82	83	84	85	86	
lr	Pt	Au	Hg	ТІ	Pb	Bi	Ро	At	Rn	
109	110	111	112	113	114	115	116	117	118	
Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og	

Two (strongly-interconnected) key aspects of DFT+U(+V)

Hubbard parameters

Hubbard projectors

The values of Hubbard parameters are not known a priori

The values of Hubbard parameters are not known a priori

Two strategies

The values of Hubbard parameters are not known a priori

Two strategies

(Semi-)empirical

Tune *U* to reproduce, for example:

- Band gaps
- Magnetic moments
- Lattice parameters
- Oxidation enthalpies
- . . .

Requires the availability of the experimental data!

Two strategies

(Semi-)empirical

Tune *U* to reproduce, for example:

- Band gaps
- Magnetic moments
- Lattice parameters
- Oxidation enthalpies
- . . .

Requires the availability of the experimental data!

- The values of Hubbard parameters are not known a priori

First-principles

- Constrained density-functional theory (cDFT)
- Constrained random phase approximation (cRPA)
- Hartree-Fock-based approaches (e.g. ACBN0)

Linear-response theory

this talk

Hubbard parameters are not universal

Computed Hubbard parameters depend on:

• Type of Hubbard projector functions (e.g. atomic, orthogonalized atomic, maximally localized Wannier functions, etc.)

 $(\mathbf{n}^{I\sigma})_{m_1m_2}$

- Oxidation state of a pseudized atom (pseudopotentials) [1]
- Exchange-correlation functional (e.g. LDA, GGA, etc.)
- Self-consistency (i.e. either "one-shot" or self-consistent)

[1] Kulik and Marzari, JCP (2008).

$$=\sum_{i}f_{i}\langle\psi_{i\sigma}|\varphi_{m_{2}}^{I}\rangle\langle\varphi_{m_{1}}^{I}|\psi_{i\sigma}\rangle$$

Hubbard parameters from linear-response theory

$$E = E_{\rm DFT} + \frac{1}{2} \, \mathbf{U} \, {\rm Tr} \left[(\mathbf{1} - \mathbf{n}) \, \mathbf{n} \right] \qquad n = {\rm Tr}[\mathbf{n}]$$

The main idea: Hubbard corrections remove spurious curvature of the total energy

Note: There is no theorem for the piece-wise linearity of E in the Hubbard manifold (only for total number of electrons)

Hubbard parameters from linear-response theory

$$E = E_{\rm DFT} + \frac{1}{2} \, \mathbf{U} \, {\rm Tr} \left[(\mathbf{1} - \mathbf{n}) \, \mathbf{n} \right]$$

The main idea: Hubbard corrections remove spurious curvature of the total energy

Note: There is no theorem for the piece-wise linearity of E in the Hubbard manifold (only for total number of electrons)

$$n = Tr[n]$$

Hubbard parameters can be obtained from the following condition:

Cococcioni and de Gironcoli, PRB (2005).

U & V from linear-response theory

Old approach: supercells + finite differences (computationally expensive)

Modified Kohn-Sham equations:

$$\left(\hat{H}_{\sigma} + \lambda^{J} \hat{V}_{\text{pert}}^{J}\right) |\psi_{v\mathbf{k}\sigma}\rangle = \varepsilon_{v\mathbf{k}\sigma} |\psi_{v\mathbf{k}\sigma}\rangle$$

Response matrices (from finite differences):

$$\chi_{IJ} = \frac{\Delta n^{I}}{\Delta \lambda^{J}}$$

Hubbard parameters:

 $(\chi_0^{-1} - \chi^{-1})_{II} \quad V^{IJ} = (\chi_0^{-1} - \chi^{-1})_{II} \quad V$ TTI)IJ

M. Cococcioni and S. de Gironcoli, PRB (2005).

New approach: primitive cells + DFPT (computationally much less expensive)

Perturbation theory to 1st order (DFPT): $(\hat{H}_{\sigma}^{\circ} - \varepsilon_{v\mathbf{k}\sigma}^{\circ}) \left| \frac{d\psi_{v\mathbf{k}\sigma}}{d\lambda J} \right\rangle$ $= -\left(\frac{d\hat{V}_{\text{Hxc},\sigma}}{d\lambda^{J}} - \frac{d\varepsilon_{v\mathbf{k}\sigma}}{d\lambda^{J}} + \hat{V}_{\text{pert}}^{J}\right)|\psi_{v\mathbf{k}\sigma}^{\circ}\rangle$ Response occupation matrices: $\frac{dn_{m_1m_2}^{sl\sigma}}{d\lambda^{s'l'}} = \frac{1}{N_{\mathbf{q}}} \sum_{\mathbf{q}} e^{i\mathbf{q}\cdot(\mathbf{R}_l - \mathbf{R}_{l'})} \Delta_{\mathbf{q}}^{s'} \bar{n}_{m_1m_2}^{s\sigma}$

I. Timrov, N. Marzari, M. Cococcioni, PRB (2018) & PRB (2021). 28

Comparison of the "conventional" linear response and DFPT

Scaling

Reduction of $N_{\mathbf{a}}$ in DFPT Symmetry (no equivalence in the supercell approach)

Timrov, Marzari, and Cococcioni, PRB (2018), PRB (2021), CPC (2022).

Benchmark of the equivalence between the two approaches

Method	k -mesh	SC-size/q-mesh	U(Ni-a
LR-SC	$6 \times 6 \times 6$	$2 \times 2 \times 2$	7.895
DFPT	$12 \times 12 \times 12$		7.900
LR-SC	$4 \times 4 \times 4$	$3 \times 3 \times 3$	8.146
DFPT	$12 \times 12 \times 12$		8.149
LR-SC	$3 \times 3 \times 3$	$4 \times 4 \times 4$	8.168
DFPT	$12 \times 12 \times 12$		8.172

HP code is public and is part of

Q U A N T U M E S P R E S S O

The zoo of Hubbard projectors

1. Nonorthogonalized atomic orbitals

 $\phi_{m_1}^{I}(\mathbf{r} - \mathbf{R}_{I})$ (contained in pseudopotentials)

2. Orthogonalized atomic orbitals

$$\tilde{\phi}_{m_1}^{I}(\mathbf{r} - \mathbf{R}_I) = \sum_{Jm_2} \left(\hat{O}^{-\frac{1}{2}} \right)_{m_2m_1}^{JI} \phi_{m_2}^{J} (\mathbf{r})$$
$$\left(\hat{O} \right)_{m_1m_2}^{IJ} = \langle \phi_{m_1}^{I} | \phi_{m_2}^{J} \rangle$$

3. Maximally localized Wannier functions

$$w_{m_1}^{I}(\mathbf{r} - \mathbf{R}_{I}) = \frac{1}{\sqrt{N_{\mathbf{k}}}} \sum_{\mathbf{k}} e^{-i\mathbf{k} \cdot \mathbf{R}_{I}} \sum_{n}^{N_{\mathrm{KSban}}}$$

Drawback:

Application of Hubbard U twice in the overlap regions

 $(\mathbf{r} - \mathbf{R}_J)$

ds

 $U_{nm_1}^{(\mathbf{k})} \psi_{n\mathbf{k}}(\mathbf{r})$

Self-consistent workflow of DFT+*U*+*V*

Timrov, Marzari, and Cococcioni, PRB (2021).

Discharging process

Li-ion batteries

Correct description of change in oxidation state upon lithiation

Change in the oxidation state due to accomodation of an extra electron

Correct description of change in oxidation state upon lithiation

Li intercalation voltages

Cococcioni and Marzari, PRM (2019).

 $\Phi = -\frac{E(\text{Li}_{x_2}S) - E(\text{Li}_{x_1}S) - (x_2 - x_1)E(\text{Li})}{(x_2 - x_1)e}$

Timrov, Aquilante, Cococcioni, Marzari, PRX Energy (2022).

Li intercalation voltages

Cococcioni and Marzari, PRM (2019).

Timrov, Aquilante, Cococcioni, Marzari, PRX Energy (2022).

Self-consistent U and V from linear-response theory

M1 - M4 = Mn1 - Mn4

HP	Mn1	Mn2	Mn3	Mn4
U	6.26	6.26	6.26	6.26
V	0.54 - 1.07	0.54 - 1.07	0.54 - 1.07	0.54-1.0

Self-consistent U and V from linear-response theory

M1 - M4 = Mn1 - Mn4

HP	Mn1	Mn2	Mn3	Mn4
U	6.26	6.26	6.26	6.26
V	0.54 - 1.07	0.54 - 1.07	0.54 - 1.07	0.54-1.0
U	6.26	6.25	6.67	5.44
V	0.40 - 1.01	0.46 - 1.05	0.54 - 1.11	0.39-1.0

Self-consistent U and V from linear-response theory

M1 - M4 = Mn1 - Mn4

_					
	HP	Mn1	Mn2	Mn3	Mn4
	U	6.26	6.26	6.26	6.26
	V	0.54 - 1.07	0.54 - 1.07	0.54 - 1.07	0.54-1.0
	U	6.26	6.25	6.67	5.44
	V	0.40 - 1.01	0.46 - 1.05	0.54 - 1.11	0.39-1.0
	U	6.42	4.95	6.41	4.94
	V	0.34 - 1.01	0.38 - 0.96	0.34 - 1.01	0.38-0.9
	U	4.67	4.64	6.58	4.98
	V	0.48 - 0.72	0.31 - 0.91	0.33 - 1.02	0.41- 0.7
	U	4.56	4.56	4.56	4.56
	V	0.42 - 0.78	0.42 - 0.78	0.42 - 0.78	0.42-0.7

Hubbard parameters are site-dependent and change upon the (de)lithiation

How one would describe the change in U&V empirically?

Spinel cathode materials

These systems are much more expensive computationally for hybrid functionals (and less accurate), but modest for DFT+*U*+*V*

Li intercalation voltages

 $\Phi = -\frac{E(\mathrm{Li}_{x_2}\mathrm{S}) - E(\mathrm{Ii}_{x_2}\mathrm{S})}{E(\mathrm{Ii}_{x_2}\mathrm{S})} - E(\mathrm{Ii}_{x_2}\mathrm{S}) -$

$$\frac{(\text{Li}_{x_1}\text{S}) - (x_2 - x_1)E(\text{Li})}{(x_2 - x_1)e}$$

Timrov, Kotiuga, and Marzari, PCCP (2023).

High-throughput search of novel Li-ion battery cathode materials

Malica, Bastonero, Bercx, Timrov, Marzari, in preparation

Accelerating Hubbard functionals through machine learning

Distribution of Hubbard *U* values for Mn, Fe, Co, and Ni in various compounds

Uhrin, Zadoks, Binci, Marzari, Timrov, in preparation

Accelerating Hubbard functionals through machine learning

Distribution of Hubbard U values for

Uhrin, Zadoks, Binci, Marzari, Timrov, in preparation

Formation energies of O vacancies in perovskites

C. Ricca, I. Timrov et al., PRB (2019) & PRR (2020).

Number of atoms in the supercell

DFT+*U*+*V* accurately predicts the correct formation energies of O vacancies in the dilute limit

Phase stability of perovskites

At T = 0 K, DFT+U incorrectly stabilizes the cubic phase, while DFT+U+V correctly retains the rhombohedral phase

Gebreyesus, Bastonero, Kotiuga, Marzari, Timrov, PRB (2023).

31

Can Hubbard corrections improve band gaps?

Can we use DFT+*U*(+*V*) **to predict band gaps?**

Can Hubbard corrections improve band gaps?

By applying the Hubbard U correction to the band edges we might expect improvements in the band gap values with respect to standard DFT

High-throughput search of novel materials for H₂ production

Xiong, ..., Timrov, ..., Dabo, Energy Environ. Sci. (2021).

 $E_{VB} > 1.2 \text{ V vs. RHE}, E_{CB} < 0 \text{ V vs. RHE}$ after correction (DFT+U without fitting)

Phase purity confirmed by X-ray diffraction

Abundance

High-throughput search of novel materials for H₂ production

18 out of 70150 materials were identified as candidates for the photocatalytic water splitting

Xiong, ..., Timrov,..., Dabo, Energy Environ. Sci. (2021).

	Space group	$\begin{array}{l} \mathbf{DFT} \ \varepsilon_{\mathbf{g}} \\ \textbf{(eV)} \end{array}$	DFT+ $U \varepsilon_{\rm g}$ (eV)	Exp (eV
Oxides				
$SrCu_2O_2$	I4 ₁ /amd	1.81	3.11	3.3
$BaCu_2O_2$	I4 ₁ /amd	1.39	3.22	
CuAlO ₂	$R\bar{3}m$	1.78	3.07	2.9
CuGaO ₂	$R\bar{3}m$	0.75	2.46	1.9
$Ca_{12}Al_{14}O_{33}$	C2	2.01	3.73	4.1
Na_3BiO_4	P2/c	1.04	2.21	2.6
Sr_2PbO_4	Pbam	1.43	2.31	1.7
Sulfides				
Cu ₃ SbS ₃	$P2_{1}2_{1}2_{1}$	1.06	1.89	
Cu_2WS_4	$Par{4}2m$	1.66	2.06	1.7
Cu_3NbS_4	$P\bar{4}3m$	1.81	1.97	2.5
CuYS ₂	Pnma	1.63	2.18	
Oxychalcogenide	S			
LaOCuS	P4/nmm	1.70	2.65	3.1
LaOCuSe	P4/nmm	1.48	2.44	2.8
$La_4O_4Se_3$	Amm2	2.01	2.04	1.9
Na ₂ TeO ₄	$P2_{1}/c$	1.39	3.30	
Oxynitrides				
CaTaO ₂ N	$Pmc2_1$	1.67	2.46	2.6
LaTiO ₂ N	$I2_{1}2_{1}2_{1}$	1.36	2.42	2.1
Others				
$Na_5CuO_2(OH)_2$	Pnma	1.49	3.64	

Exploring the energy landscape of magnetic materials

Ponet, Di Lucente, Marzari, <u>https://doi.org/10.21203/rs.3.rs-3358581/v1</u>

Applying the constraint to the occupations:

Orbital-resolved DFT+*U*

Different U for t_{2g} and e_g orbitals of the *d* manifold

Macke, Timrov, Marzari, Colombi Ciacchi, arXiv:2312.13580

Adiabatic spin energies for Fe(II)-hexacomplexes

Density-functional perturbation theory +U (DFPT+U)

Floris, Timrov, Himmetoglu, Marzari, de Gironcoli, and Cococcioni, PRB (2020).

Hubbard corrections are crucial for the correct insulating ground state and dynamical stability of CoO

Density-functional perturbation theory +U (DFPT+U)

Hubbard corrections are crucial for the correct insulating ground state and dynamical stability of CoO

Floris, Timrov, Himmetoglu, Marzari, de Gironcoli, and Cococcioni, PRB (2020).

Electron-phonon coupling in Mott-Hubbard insulators

Zhou, Park, Timrov, Floris, Cococcioni, Marzari, Bernardi, PRL (2021).

$|g_{\nu}^{\sigma}(\boldsymbol{q})| \equiv (\sum_{mn} |g_{mn\nu}^{\sigma}(\boldsymbol{k}=0,\boldsymbol{q})|^2 / N_b)^{1/2}$

Hubbard U correction is crucial for the correct description of the electron-phonon coupling in Mott-Hubbard inssulators

Η

Parent (undoped) cuprate La₂CuO₄

Chang, Timrov, Park, Zhou, Marzari, Bernardi, arXiv:2401.11322

7.5 10.0 12.5 15.0

10.0 12.5 15.0

U (eV)

7.5

U (eV)

Electron-phonon coupling in La₂CuO₄

Accurate description of the e-ph coupling to understand the microscopic origin of the high Tc superconductivity

Chang, Timrov, Park, Zhou, Marzari, Bernardi, arXiv:2401.11322

Electron-phonon coupling distribution function

Magnon dispersions from TDDFT+U

TDDFT@LDA (TDLDA) largely overestimates magnon energies

Remarkable agreement between TDLDA+U calculations and experiments

[1] M. Hutchings et al., PRB 6, 3447 (1972), [2] G. Pepy, JPCS 35, 433 (1974), [3] M. Kohgi et al., SSC 11, 391 (1972).

- U and V from DFPT \longrightarrow train the machine learning model [1]
- DFPT calculation of U takes less time than HSE06 [2]

Formula	No. of Atoms k-Points		U Calculation		HSE06 Calculation		Ratio	
ronnuia	per Unit Cell	Mesh	q-Points	t_U	q-Points	$E_{ m g}$	$t_{ m HSE06}$	$t_{ m HSE06}/t_U$
TiO ₂	6	$9 \times 6 \times 6$	$4 \times 3 \times 3$	3h 46m	$3 \times 2 \times 2$	3.30	10h 1m	2.7
NbNO	12	$6 \times 6 \times 6$	$3 \times 2 \times 2$	7h 35m	$2 \times 2 \times 2$	2.68	61h 52m	8.2

[1] Uhrin, Zadoks, Binci, Marzari, Timrov, in preparation.

• When U (and V) are provided, DFT+U(+V) is only marginally more expensive than DFT

Calculation of U and V from DFPT is ~20x more expensive than the ground-state DFT

[2] Kirchner-Hall, Zhao, Xiong, Timrov, Dabo, Appl. Sci. (2021).

Limitations/open questions of linear-response theory (LRT) for U and V

- Hubbard functionals are not variational w.r.t. U and V (no theorem/proof)

• DFT+U(+V) is a mean-field single-determinant approach (no strong correlations)

Piece-wise linearity in the Hubbard manifold is heuristic (no proof)

• For closed shells (i.e. fully occupied manifolds) the U values from LRT are too large

• U and V are position-dependent \longrightarrow dU/dR \neq 0, dV/dR \neq 0 \longrightarrow extra terms in forces

Hybrid functionals

correlation functionals

 $E_{\rm Fock}$ is computationally very expensive in the plane-wave basis set

Main idea

Mixing the Fock energy (of the Hartree-Fock method) with the (semi-)local exchange-

$$\frac{\psi_{v,\mathbf{k}}^{*}(\mathbf{r})\psi_{v',\mathbf{k}'}(\mathbf{r})\psi_{v',\mathbf{k}'}(\mathbf{r}')\psi_{v,\mathbf{k}}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} d$$

PBE0 hybrid functional

C. Adamo and V. Barone, JCP 110, 6158 (1999).

correlation GGA-PBE energy

 $\alpha = 0.25$

C. Adamo and V. Barone, JCP 110, 6158 (1999).

100% of the (semi-local) correlation GGA-PBE energy

Electronic atomization energies (i.e. energy required to completely separate a molecule into its constituent atoms) in kcal/mol

Molecule	PBE	PBE0	Expt.
N ₂	244	225	227
02	143	124	118
SO	142	128	122

PBE0 hybrid functional gives much more accurate results than PBE compared to experiments for simple molecules

J. Paier, R. Hirschl, M. Marsman, G. Kresse, JCP 122, 234102 (2005).

Molecules

	PBE		PBE0		Exj	pt. [‡]
Solid	a_0	B_0	a_0	<i>B</i> ₀	a_0	B_0
Li	3.438	13.7	3.463	13.7	3.477	13.0
Na	4.200	7.80	4.229	8.22	4.225	7.5
Al	4.040	76.6	4.012	86.0	4.032	79.4
BN	3.626	370	3.600	402	3.616	400
BP	4.547	160	4.520	174	4.538	165
С	3.574	431	3.549	467	3.567	443
Si	5.469	87.8	5.433	99.0	5.430	99.2
SiC	4.380	210	4.347	231	4.358	225
β-GaN	4.546	169	4.481	199	4.520	210
GaP	5.506	75.3	5.446	87.3	5.451	88.7
GaAs	5.752	59.9	5.682	72.7	5.648	75.6
LiF	4.068	67.3	4.011	72.8	4.010	69.8

PBE0 provides more accurate results than PBE for the lattice parameters and bulk modulus of solids

J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, J.G. Angyan, JCP 124, 154709 (2006).

Solids

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		PBE	PBE0	Expt.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			GaAs	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma_{15\nu} \rightarrow \Gamma_{1c}$	0.56	2.01	1.52^{a}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma_{15\nu} \rightarrow X_{1c}$	1.46	2.67	1.90 ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma_{15v} \rightarrow L_{1c}$	1.02	2.37	1.74 ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Si	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma_{25v}' \rightarrow \Gamma_{15c}$	2.57	3.97	3.34–3.36, ^b 3.05 ^c
$\begin{split} \Gamma_{25v}' \to L_{1c} & 1.54 & 2.88 & 2.06(3) \\ \Gamma_{25v}' \to \Gamma_{15} & 5.59 & 7.69 & 7.3^{a} \\ \Gamma_{25v}' \to X_{1c} & 4.76 & 6.66 \\ \Gamma_{25v}' \to L_{1c} & 8.46 & 10.77 \\ & MgO \\ \Gamma_{15} \to \Gamma_{1} & 4.75 & 7.24 & 7.7^{g} \\ X_{4'} \to \Gamma_{1} & 9.15 & 11.67 \\ L \to \Gamma_{1} & 7.91 & 10.38 \\ \end{split}$	$\Gamma'_{25v} \rightarrow X_{1c}$	0.71	1.93	1.13, ^d 1.25 ^c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma'_{25\nu} \rightarrow L_{1c}$	1.54	2.88	2.06(3), ^e
$\begin{array}{cccccc} & & & & & & \\ \Gamma_{25\nu}' \rightarrow \Gamma_{15} & & 5.59 & 7.69 & 7.3^{a} \\ \Gamma_{25\nu}' \rightarrow X_{1c} & & 4.76 & 6.66 \\ \Gamma_{25\nu}' \rightarrow L_{1c} & & 8.46 & 10.77 \\ & & & & \\ & & & \\ \Gamma_{15} \rightarrow \Gamma_{1} & & 4.75 & 7.24 & 7.7^{g} \\ X_{4'} \rightarrow \Gamma_{1} & & 9.15 & 11.67 \\ L_{4} \rightarrow \Gamma_{4} & & 7.91 & 10.38 \\ \end{array}$	200			$2.40(15)^{\rm f}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			С	
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\Gamma_{25\nu}' \rightarrow \Gamma_{15}$	5.59	7.69	7.3 ^a
$ \begin{array}{cccc} \Gamma_{25\nu}' \to L_{1c} & 8.46 & 10.77 \\ & & MgO \\ \Gamma_{15} \to \Gamma_{1} & 4.75 & 7.24 & 7.7^{g} \\ X_{4\prime} \to \Gamma_{1} & 9.15 & 11.67 \\ L_{4} \to \Gamma_{4} & 7.91 & 10.38 \end{array} $	$\Gamma'_{25\nu} \rightarrow X_{1c}$	4.76	6.66	
MgO $\Gamma_{15} \rightarrow \Gamma_{1}$ 4.75 7.24 7.7^{g} $X_{4'} \rightarrow \Gamma_{1}$ 9.15 11.67 $I \rightarrow \Gamma_{4}$ 7.91 10.38	$\Gamma'_{25v} \rightarrow L_{1c}$	8.46	10.77	
$ \begin{array}{ccc} \Gamma_{15} \rightarrow \Gamma_{1} & 4.75 & 7.24 & 7.7^{g} \\ X_{4'} \rightarrow \Gamma_{1} & 9.15 & 11.67 \\ L_{*} \rightarrow \Gamma_{*} & 7.91 & 10.38 \end{array} $			MgO	
$X_{4'} \rightarrow \Gamma_1$ 9.15 11.67 $L_{+} \rightarrow \Gamma_{-}$ 7.91 10.38	$\Gamma_{15} \rightarrow \Gamma_1$	4.75	7.24	7.7 ^g
$L \rightarrow \Gamma$ 7.91 10.38	$X_{4'} \rightarrow \Gamma_1$	9.15	11.67	
L_1 / L_1 10.50	$L_1 \rightarrow \Gamma_1$	7.91	10.38	

gaps

Direct and indirect band

J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, J.G. Angyan, JCP 124, 154709 (2006).

• PBE underestimates band gaps

 PBE0 predicts more accurate band gaps, but this is not systematic and there are overestimations

 Overestimation of band gaps in PBE0 is related to the non-optimal fraction of the Fock exchange (see next slides)

B3LYP hybrid functional

$$\alpha = 0.20, \beta = 0.72, \gamma = 0.81$$


```
A.D. Becke, JCP 98, 1372 (1993).
P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, JPC 98, 11623 (1994).
```

$$P^{A} + \beta \Delta E_{x}^{B88} + \gamma E_{c}^{LYP} + (1 - \gamma) E_{c}^{LD}$$

81% of the (local) correlation GGA-LYP energy

Becke's gradient correction to the exchange functional

19% of the (local) correlation LDA energy

Molecules

	MP2			DFT/B3LYP			expt ^b	
ν	D	R	ν	D	R	ν	D	
1528	14	-5	1500	13	-5	1453	25	
1516	8	4	1489	8	5	1441	3	
1479	47	-11	1462	43	-11	1419	35	
1438	52	11	1422	51	11	1387	58	
1394	52	27	1389	50	28	1350	40	
1320	97	9	1316	112	3	1284	161	
1230	47	-11	1229	44	-4	1198	47	_
1216	14	0	1204	19	-5	1178	35	_
1146	191	82	1137	327	99	1118	483	
1125	219	-40	1113	87	-58	1099	51	_
1077	10	-12	1076	11	-6	1055	40	_
1056	271	-50	1041	268	-50	1022	251	—
973	126	10	966	91	7	959	70	
914	9	-29	914	8	-27	896	10	_
873	221	33	850	310	46	836	371	
829	97	26	817	34	10	812	55	
714	3	-3	712	2	2	711	13	

^{*a*} Frequencies, ν , in cm⁻¹, dipole strengths D in 10⁻⁴⁰ esu² cm², and rotational strengths R in 10^{-44} esu² cm². R values are for (R)-(+)-1.

P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, JPC 98, 11623 (1994).

Frequencies (ν), dipole strengths (D), rotational strengths (R) of 4-methyl-2-oxetanone

The Coulomb potential is partitioned as a sum of the short-range (SR) and long-range (LR) parts:

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{\operatorname{erfc}(\omega|\mathbf{r} - \mathbf{r}'|)}{|\mathbf{r} - \mathbf{r}'|} + \frac{\operatorname{erf}(\omega|\mathbf{r} - \mathbf{r}'|)}{|\mathbf{r} - \mathbf{r}'|}$$

Range-separated hybrid functionals

Range separation

From PBE0 to HSE hybrid functional

$$E_{\rm xc}^{\rm PBE0} = \alpha E_{\rm x}^{\rm Fock} + (1 - \alpha) E_{\rm x}^{\rm PBE} + E_{\rm c}^{\rm PBE}$$

$$E_{\mathrm{xc}}^{\mathrm{HSE06}} = \alpha E_{\mathrm{x}}^{\mathrm{Fock,SR}} + (1-\alpha) E_{\mathrm{x}}^{\mathrm{PBE,SR}} + \frac{E_{\mathrm{x}}^{\mathrm{PBE,LR}} + E_{\mathrm{c}}^{\mathrm{PBE}}}{\varepsilon}$$

J. Heyd, G.E. Scuseria, M. Ernzerhof, JCP 118, 8207 (2003); JCP 124, 219906 (2006).

	PBE	PBE0	HSE03	Expt.
		GaAs		
$\Gamma_{15\nu} \rightarrow \Gamma_{1c}$	0.56	2.01	1.29	1.52^{a}
$\Gamma_{15v} \rightarrow X_{1c}$	1.46	2.67	1.99	1.90 ^a
$\Gamma_{15v} \rightarrow L_{1c}$	1.02	2.37	1.64	1.74 ^a
		Si		
$\Gamma_{25v}' \rightarrow \Gamma_{15c}$	2.57	3.97	3.19	3.34–3.36, ^b
200				3.05 ^c
$\Gamma'_{25v} \rightarrow X_{1c}$	0.71	1.93	1.23	$1.13,^{d}1.25^{c}$
$\Gamma'_{25v} \rightarrow L_{1c}$	1.54	2.88	2.13	$2.06(3),^{e}$
				$2.40(15)^{\rm f}$
		С		
$\Gamma_{25v}' \rightarrow \Gamma_{15}$	5.59	7.69	6.77	7.3 ^a
$\Gamma'_{25v} \rightarrow X_{1c}$	4.76	6.66	5.76	
$\Gamma'_{25v} \rightarrow L_{1c}$	8.46	10.77	9.80	
		MgO		
$\Gamma_{15} \rightarrow \Gamma_1$	4.75	7.24	6.34	7.7 ^g
$X_{4'} \rightarrow \Gamma_1$	9.15	11.67	10.79	
$L_1 \rightarrow \Gamma_1$	7.91	10.38	9.49	

J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, J.G. Angyan, JCP 124, 154709 (2006).

Direct and indirect band gaps

Solids

What fraction of Fock exchange to use in solids (α parameter)?

From the analogy with the many-body perturbation theory, one can realize that:

J.H. Skone, M. Govoni, G. Galli, PRB 89, 195112 (2014).

 ϵ_{∞} is the electronic dielectric constant of a material

Dielectric constant ϵ_{∞} of solids

Material	ϵ_{∞}
Ge	15.9
Si	11.9
AlP	7.54
SiC	6.52
TiO ₂	6.34
NiO	5.76
С	5.70
CoO	5.35
GaN	5.30
ZnS	5.13
MnO	4.95
WO_3	4.81

J.H. Skone, M. Govoni, G. Galli, PRB 89, 195112 (2014).

Material	ϵ_{∞}
BN	4.50
HfO ₂	4.41
AlN	4.18
ZnO	3.74
Al_2O_3	3.10
MgO	2.96
LiCl	2.70
NaC1	2.40
LiF	1.90
H_2O	1.72
Ar	1.66
Ne	1.23

Band gaps of solids

Material	PBE	PBE0 ($\alpha = 0.25$)	PBE0 modified ($\alpha = 1/\epsilon_{\infty}$)	Expt.
Ge	0.00	1.53	0.77	0.74
Si	0.62	1.75	1.03	1.17
AlP	1.64	2.98	2.41	2.51
SiC	1.37	2.91	2.33	2.39
TiO ₂	1.81	3.92	3.18	3.3
NiO	0.97	5.28	4.61	4.3
С	4.15	5.95	5.44	5.48
CoO	0.00	4.53	4.01	2.5
GaN	1.88	3.68	3.30	3.29
ZnS	2.36	4.18	3.85	3.91
MnO	1.12	3.87	3.66	3.9
WO ₃	1.92	3.79	3.50	3.38

J.H. Skone, M. Govoni, G. Galli, PRB 89, 195112 (2014).

J.H. Skone, M. Govoni, G. Galli, PRB 93, 235106 (2016).

Calculation of the Fock energy in practice

This allows us to speed up significantly the calculation of $E_{
m x}^{
m Fock}$

$$rac{\psi_{v,\mathbf{k}}^{*}(\mathbf{r})\psi_{v',\mathbf{k}'}(\mathbf{r})\psi_{v',\mathbf{k}'}^{*}(\mathbf{r}')\psi_{v,\mathbf{k}}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} d\mathbf{r}$$

auxiliary q point grid ($\mathbf{q} = \mathbf{k} - \mathbf{k}'$)

Replace one sum over k points with a sum over q points ($N_{\mathbf{q}} \leq N_{\mathbf{k}}$)

 $E_{\mathbf{x}}^{\text{Fock}} = -\frac{1}{2} \sum_{\mathbf{k}} \sum_{\mathbf{k}'} \sum_{v} \sum_{v} \int_{v'} \int \int \frac{\psi_{v,\mathbf{k}'}^*(\mathbf{r})\psi_{v',\mathbf{k}'}(\mathbf{r})\psi_{v,\mathbf{k}'}(\mathbf{r}')\psi_{v,\mathbf{k}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$

$$E_{\mathbf{x}}^{\mathbf{Fock}} = -\frac{1}{2} \sum_{\mathbf{k}} \sum_{\mathbf{k}'} \sum_{v} \sum_{v'} \int_{v'} \int$$

 $\frac{\psi_{v,\mathbf{k}}^{*}(\mathbf{r})\psi_{v',\mathbf{k}'}(\mathbf{r})\psi_{v',\mathbf{k}'}(\mathbf{r}')\psi_{v,\mathbf{k}}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$

$$E_{\mathbf{x}}^{\text{Fock}} = -\frac{1}{2} \sum_{\mathbf{k}} \sum_{\mathbf{k}'} \sum_{v} \sum_{v'} \int \int \frac{\psi_{v,\mathbf{k}}^{*}(\mathbf{r})\psi_{v',\mathbf{k}'}(\mathbf{r})\psi_{v,\mathbf{k}'}(\mathbf{r}')\psi_{v,\mathbf{k}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$$

$$= -\frac{2\pi}{\Omega} \frac{1}{N_{\mathbf{q}}} \sum_{\mathbf{q}} \sum_{\mathbf{G}} \frac{A(\mathbf{q} + \mathbf{G})}{|\mathbf{q} + \mathbf{G}|^{2}}, \qquad A(\mathbf{q} + \mathbf{G}) = \frac{1}{N_{\mathbf{k}}} \sum_{\mathbf{k}} \sum_{v,v'} |\rho_{v,\mathbf{k}}^{v',\mathbf{k}-\mathbf{q}}(\mathbf{q} + \mathbf{G})|$$

$$\rho_{v,\mathbf{k}}^{v',\mathbf{k}-\mathbf{q}}(\mathbf{r}) = u_{v',\mathbf{k}-\mathbf{q}}^{*}(\mathbf{r}) u_{v,\mathbf{k}}(\mathbf{r})$$

$$E_{\mathbf{x}}^{\text{Fock}} = -\frac{1}{2} \sum_{\mathbf{k}} \sum_{\mathbf{k}'} \sum_{v} \sum_{v'} \int \int \frac{\psi_{v,\mathbf{k}}^{*}(\mathbf{r})\psi_{v',\mathbf{k}'}(\mathbf{r})\psi_{v',\mathbf{k}'}(\mathbf{r}')\psi_{v,\mathbf{k}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$$

$$\Rightarrow$$

$$Pock = -\frac{2\pi}{\Omega} \frac{1}{N_{\mathbf{q}}} \sum_{\mathbf{q}} \sum_{\mathbf{G}} \frac{A(\mathbf{q} + \mathbf{G})}{|\mathbf{q} + \mathbf{G}|^{2}}, \qquad A(\mathbf{q} + \mathbf{G}) = \frac{1}{N_{\mathbf{k}}} \sum_{\mathbf{k}} \sum_{v,v'} |\rho_{v,\mathbf{k}}^{v',\mathbf{k}-\mathbf{q}}(\mathbf{q} + \mathbf{G})|$$

$$\rho_{v,\mathbf{k}}^{v',\mathbf{k}-\mathbf{q}}(\mathbf{r}) = u_{v',\mathbf{k}-\mathbf{q}}^{*}(\mathbf{r}) u_{v,\mathbf{k}}(\mathbf{r})$$

$$\psi_{v,\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{N_{\mathbf{k}}}} e^{i\mathbf{k}\cdot\mathbf{r}} u_{v,\mathbf{k}}(\mathbf{r})$$

$$E_{\mathbf{x}}^{\text{Fock}} = -\frac{1}{2} \sum_{\mathbf{k}} \sum_{\mathbf{k}'} \sum_{v} \sum_{v'} \int \int \frac{\psi_{v,\mathbf{k}}^{*}(\mathbf{r})\psi_{v',\mathbf{k}'}(\mathbf{r}')\psi_{v,\mathbf{k}'}(\mathbf{r}')\psi_{v,\mathbf{k}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$$

$$= -\frac{2\pi}{\Omega} \frac{1}{N_{\mathbf{q}}} \sum_{\mathbf{q}} \sum_{\mathbf{G}} \frac{A(\mathbf{q} + \mathbf{G})}{|\mathbf{q} + \mathbf{G}|^{2}},$$

$$A(\mathbf{q} + \mathbf{G}) = \frac{1}{N_{\mathbf{k}}} \sum_{\mathbf{k}} \sum_{v,v'} |\rho_{v,\mathbf{k}}^{v',\mathbf{k}-\mathbf{q}}(\mathbf{q} + \mathbf{G})|$$

$$p_{v,\mathbf{k}}^{v',\mathbf{k}-\mathbf{q}}(\mathbf{r}) = u_{v',\mathbf{k}-\mathbf{q}}^{*}(\mathbf{r}) u_{v,\mathbf{k}}(\mathbf{r})$$

$$\psi_{v,\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{N_{\mathbf{k}}}} e^{i\mathbf{k}\cdot\mathbf{r}} u_{v,\mathbf{k}}(\mathbf{r})$$

 $E_{\mathbf{x}}^{\text{Fock}} = -\frac{2\pi}{\Omega} \frac{1}{N_{\mathbf{q}}} \sum_{\mathbf{q}} \sum_{\mathbf{G}} \frac{A(\mathbf{q} + \mathbf{G})}{|\mathbf{q} + \mathbf{G}|^2}$

F. Gygi and A. Baldereschi, PRB 34, 4405 (1986).

$$E_{\mathbf{x}}^{\text{Fock}} = -\frac{2\pi}{\Omega} \frac{1}{N_{\mathbf{q}}} \sum_{\mathbf{q}} \sum_{\mathbf{G}} \frac{A(\mathbf{q} + \mathbf{G})}{|\mathbf{q} + \mathbf{G}|}$$
$$= -\frac{2\pi}{\Omega} \left\{ \frac{1}{N_{\mathbf{q}}} \sum_{\mathbf{q},\mathbf{G}} \frac{A(\mathbf{q} + \mathbf{G})}{|\mathbf{G}|} \right\}$$

We are adding and subtracting exactly the same term (in red)

F. Gygi and A. Baldereschi, PRB 34, 4405 (1986).

$$E_{\mathbf{x}}^{\text{Fock}} = -\frac{2\pi}{\Omega} \frac{1}{N_{\mathbf{q}}} \sum_{\mathbf{q}} \sum_{\mathbf{G}} \frac{A(\mathbf{q} + \mathbf{G})}{|\mathbf{q} + \mathbf{G}|^{2}}$$

$$= -\frac{2\pi}{\Omega} \left\{ \frac{1}{N_{\mathbf{q}}} \sum_{\mathbf{q},\mathbf{G}} \frac{A(\mathbf{q} + \mathbf{G}) - A(\mathbf{0})e^{-\alpha|\mathbf{q} + \mathbf{G}|^{2}}}{|\mathbf{q} + \mathbf{G}|^{2}} + \frac{1}{N_{\mathbf{q}}} \sum_{\mathbf{q},\mathbf{G}} \frac{e^{-\alpha|\mathbf{q} + \mathbf{G}|^{2}}}{|\mathbf{q} + \mathbf{G}|^{2}} A(\mathbf{0}) \right\}$$

$$= -\frac{2\pi}{\Omega} \left\{ \frac{1}{N_{\mathbf{q}}} \left[\sum_{\mathbf{q},\mathbf{G}} \frac{A(\mathbf{q} + \mathbf{G}) - A(\mathbf{0})e^{-\alpha|\mathbf{q} + \mathbf{G}|^{2}}}{|\mathbf{q} + \mathbf{G}|^{2}} + \lim_{\mathbf{q} \to \mathbf{0}} \frac{A(\mathbf{q}) - A(\mathbf{0})}{|\mathbf{q}^{2}} \right] + \mathbf{D} \times A(\mathbf{0}) \right\}$$

$$D = \frac{1}{N_{\mathbf{q}}} \left[-\sum_{\mathbf{q},\mathbf{G}}^{\prime} \frac{e^{-\alpha |\mathbf{q}+\mathbf{G}|^2}}{|\mathbf{q}+\mathbf{G}|^2} + \alpha \right] + \frac{\Omega}{(2\pi)^3} \sqrt{\frac{\pi}{\alpha}}$$

F. Gygi and A. Baldereschi, PRB 34, 4405 (1986).

$$\begin{split} E_{\mathbf{x}}^{\text{Fock}} &= -\frac{2\pi}{\Omega} \frac{1}{N_{\mathbf{q}}} \sum_{\mathbf{q}} \sum_{\mathbf{G}} \frac{A(\mathbf{q} + \mathbf{G})}{|\mathbf{q} + \mathbf{G}|^{2}} \\ &= -\frac{2\pi}{\Omega} \left\{ \frac{1}{N_{\mathbf{q}}} \sum_{\mathbf{q},\mathbf{G}} \frac{A(\mathbf{q} + \mathbf{G}) - A(0)e^{-\alpha|\mathbf{q} + \mathbf{G}|^{2}}}{|\mathbf{q} + \mathbf{G}|^{2}} + \frac{1}{N_{\mathbf{q}}} \sum_{\mathbf{q},\mathbf{G}} \frac{e^{-\alpha|\mathbf{q} + \mathbf{G}|^{2}}}{|\mathbf{q} + \mathbf{G}|^{2}} A(0) \right\} \\ &= -\frac{2\pi}{\Omega} \left\{ \frac{1}{N_{\mathbf{q}}} \left[\sum_{\mathbf{q},\mathbf{G}} \frac{A(\mathbf{q} + \mathbf{G})}{|\mathbf{q} + \mathbf{G}|^{2}} + \lim_{\mathbf{q} \to 0} \frac{A(\mathbf{q}) - A(0)}{\mathbf{q}^{2}} \right] + D \times A(0) \right\} \\ &= no \mathbf{q} + \mathbf{G} = 0 \text{ singularity,} \\ \text{straightforward to compute} \\ \end{split}$$
 non-analytic limit 0/0 \\ \text{can be dealt with using} \\ \end{split}

F. Gygi and A. Baldereschi, PRB 34, 4405 (1986).

different techniques (e.g. extrapolation)

ally

meta-GGA functionals

$$E_{\rm xc}[n_{\uparrow},n_{\downarrow}] = \int d^3r \, \boldsymbol{n}(\mathbf{r}) \, \varepsilon_{\rm xc} \Big(n_{\uparrow}(\mathbf{r}), n_{\downarrow}(\mathbf{r}), \nabla n_{\uparrow}(\mathbf{r}), \nabla n_{\downarrow}(\mathbf{r}), \nabla^2 n_{\uparrow}(\mathbf{r}), \nabla^2 n_{\downarrow}(\mathbf{r}), \tau_{\uparrow}(\mathbf{r}), \tau_{\downarrow}(\mathbf{r}), \tau_{\downarrow}(\mathbf{r})$$

$$n(\mathbf{r}) = \sum_{\sigma} n_{\sigma}(\mathbf{r})$$
 total characteristics

$$n_{\sigma}(\mathbf{r}) = \sum_{v,\mathbf{k}} |\psi_{v,\mathbf{k}}^{\sigma}(\mathbf{r})|^2$$
 spin-ch

$$au_{\sigma}(\mathbf{r}) = rac{1}{2} \sum_{v,\mathbf{k}} |
abla \psi^{\sigma}_{v,\mathbf{k}}(\mathbf{r})|^2 \quad ext{kinetic}$$

Main idea

harge density

harge density

 $\sigma = \{\uparrow, \downarrow\}$

energy density

Different meta-GGA functionals

SCAN, rSCAN, r²SCAN

$$E_{\rm xc}[n_{\uparrow},n_{\downarrow}] = \int d^3r \, n(\mathbf{r}) \, \varepsilon_{\rm xc}\Big(n_{\uparrow}(\mathbf{r}),n_{\downarrow}(\mathbf{r}),$$

 $abla n_{\uparrow}(\mathbf{r}),
abla n_{\downarrow}(\mathbf{r}),
abla^2 n_{\uparrow}(\mathbf{r}),
abla^2 n_{\downarrow}(\mathbf{r}),
abla_{\downarrow}(\mathbf{r}),
abla_{\downarrow}$

SCAN: J. Sun et al., Phys. Rev. Lett. 115, 036402 (2015). rSCAN: A. Bartok et al., J. Chem. Phys. 150, 161101 (2019). r²SCAN: J. Furness et al., J. Phys. Chem. Lett. **11**, 8208 (2020).

Accuracy of the SCAN meta-GGA functional

"SCAN" stands for Strongly Constrained and Appropriately Normed functional SCAN obeys all 17 known exact constraints

	G (kcal	3 ^{HC} /mol)	G (kcal/	-3 /mol)	BH (kcal/	[76 /mol)	Sž (kcal	22 /mol)	LC2
	ME	MAE	ME	MAE	ME	MAE	ME	MAE	ME
LSDA	-5.6	13.0	-83.7	83.7	-15.2	15.4	2.3	2.3	-0.081
BLYP	1.8	6.2	3.8	9.5	-7.9	7.9	-8.7	8.8	
PBEsol	-4.1	6.5	-58.7	58.8	-11.5	11.5	-1.3	1.8	-0.012
PBE	-2.1	6.6	-21.7	22.2	-9.1	9.2	-2.8	2.8	0.05
TPSS	1.9	3.8	-5.2	5.8	-8.6	8.7	-3.7	3.7	0.03
M06 L	-0.2	4.6	-1.6	5.2	-3.9	4.1	-0.9	0.9	0.01
SCAN	-0.8	2.7	-4.6	5.7	-7.7	7.7	-0.7	0.9	0.00

J. Sun, A. Ruzsinszky, J. P. Perdew, PRL 115, 036402 (2015).

20(Å) MAE 1 0.081 2 0.036 1 0.059 5 0.043 5 0.069 7 0.016

TABLE II. Mean error (ME) and mean absolute error (MAE) of SCAN and other semilocal functionals for the G3 set of molecules [73], the BH76 set of chemical barrier heights [74], the S22 set of weakly bonded complexes [69], and the LC20 set of solid lattice constants [75]. For the G3-1 subset of small molecules, the SCAN MAE is 3.2 kcal/mol. G3^{HC} is a subset of 46 G3 hydrocarbons, to which we have applied empirical corrections for the C atom as described in the text to show how consistently SCAN describes molecules. For all data sets, zero-point vibration effects have been removed from the reference experimental values. The LSDA results for G3 are from Ref. [25]. Becke-Lee-Yang-Parr (BLYP) [15,76], PBEsol [18], and PBE [6] are GGAs; SCAN, TPSS [7], and M06 L [20] are meta GGAs. We could not locate BLYP in VASP, but Ref. [77] suggests that its LC20 MAE may be more than twice that of PBE. (1 kcal/mol = 0.0434 eV.)

Regularized SCAN (rSCAN)

A.P. Bartok and J.R. Yates, JCP 150, 161101 (2019).

 f_x, f'_x, f''_x are the switching functions

rSCAN has better numerical behavior than SCAN, but it is less accurate than SCAN

Table 2. Mean Error (ME) and Mean Absolute Error (MAE) of TPSS,⁵⁹ SCAN,⁷ rSCAN,²² and r²SCAN for the G3 Set of 226 Molecular Atomization Energies,²⁸ the BH76 Set of 76 Chemical Barrier Heights,⁵⁴ the S22 set of 22 Interaction Energies between Closed Shell Complexes,⁵⁵ and the LC20 Set of 20 Solid Lattice Constants^{56a}

	G	3	BH76		S22		LC20	
	ME	MAE	ME	MAE	ME	MAE	ME	MAE
TPSS	-5.2	5.8	-8.6	8.6	-3.4	3.4	0.033	0.041
SCAN	-5.0	6.1	-7.7	7.7	-0.5	0.8	0.009	0.015
rSCAN	-14.0	14.3	-7.4	7.4	-1.2	1.3	0.020	0.025
r ² SCAN	-4.5	5.5	-7.1	7.2	-0.9	1.1	0.022	0.027

^aErrors for G3, BH76, and S22 sets are in kcal/mol, whereas errors for LC20 are in Å. We did not make corrections for basis set superposition error for the S22 set which used the aug-cc-pVTZ basis set.⁶⁰ All calculations for G3 and BH76 used the 6-311++G(3df, 3pd) basis set.^{28,61} Details of the computational methods are included in Section S1 of the Supporting Information.

J.W. Furness, A.D. Kaplan, J. Ning, J.P. Perdew, and J. Sun, JPCL 11, 8208 (2020).

Success stories of SCAN

Material	Expt.	LDA	PBE	HSE	SCAN
Si InP GaAs B∆s	1.17 1.42 1.52 1.60 ^b	0.60 0.50 0.30 1.21	0.71 0.72 0.53 1.26	1.11 1.52 1.41 1.71	0.97 1.06 0.8 1.51
CdSe BP GaP	1.00 1.73 2.10 2.35 2.48	0.44 1.36 1.53	0.71 1.43 1.69	1.71 1.66 1.79 2.09	1.10 1.74 1.94 1.62
β -GaN ZnS C ^d	2.48 3.17 3.72 5.50	1.70 1.87 4.14	1.25 1.69 2.12 4.17	2.27 2.97 3.32 4.94	2.03 2.63 4.58

SCAN provides more accurate band gaps than LDA and PBE, but less accurate than HSE

Z.-H. Yang, H. Peng, J. Sun, and J. P. Perdew, PRB 93, 205205 (2016).

Six polymorphs of MnO₂

D. A. Kitchaev, H. Peng, Y. Liu, J. Sun, J.P. Perdew, and G. Ceder, PRB 93, 045132 (2016).

Success stories of SCAN

Formation energies relative to the β phase

SCAN correctly predicts that the β phase is the lowest-energy phase

One of failures of SCAN

		V_0	B_0	B_0'	$m_s(V_0)$
		$(\text{\AA}^3/\text{at})$	(GPa)	(1)	$(\mu_{\rm B})$
	SCAN	11.58	157.5	5.05	2.66
bcc-Fe	PBE	11.35	197.7	4.45	2.20
	LSDA	10.36	253.3	4.39	1.95
	Expt.	11.64	175.1	4.6	1.98, ^b 2.08, ^c 2.13 ^a
	SCAN	10.38	230.5	4.79	0.73
fcc-Ni	PBE	10.90	199.8	4.76	0.63
	LSDA	10.06	253.6	4.77	0.58
	Expt.	10.81	192.5	4	0.52, ^c 0.55, ^d 0.57 ^a
	SCAN	10.45	262.5	4.15	1.73
hcp-Co	PBE	10.91	196.9	4.61	1.61
	LSDA	9.99	237.6	4.95	1.49
	Expt.	10.96	198.4	4.26	1.52,° 1.55, ^b 1.58 ^e

SCAN overestimates magnetic moments in itinerant ferromagnets

M. Ekholm, D. Gambino, H. J. M. Jönsson, F. Tasnádi, B. Alling, and I. A. Abrikosov, PRB 98, 094413 (2018).

van der Waals functionals

- vdW is a distance-dependent interaction between atoms or molecules
- vdW is weak, and it is different from ionic and covalent bonding
- vdW originate from correlations between charge fluctuations in different parts of an extended system (different fragments)
- vdW interactions are non-local
- vdW are not captured by LDA, GGA, meta-GGA (except SCAN for shortrange part of vdW), DFT+U, and hybrids.

van der Waals (vdW) force

Two types of vdW functionals

Empirical (or ab initio) corrections

$$C_6 R^{-6}$$

vdW functionals

Fully nonlocal functionals $\frac{1}{2} \iint n(\mathbf{r}) \Phi(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') d\mathbf{r} d\mathbf{r}'$

Two types of vdW functionals

Empirical (or ab initio) corrections

$$C_6 R^{-6}$$

vdW functionals

Fully nonlocal functionals

 $\frac{1}{2} \iint n(\mathbf{r}) \Phi(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') d\mathbf{r} d\mathbf{r}'$

Lennard-Jones potential

- Dispersion coefficients C_6^{ij} are determined empirically
- $f_{\rm dmp}$ is a damping function to avoid nearsingularities for small R_{ii} IJ

S. Grimme, J. Comput. Chem. 27, 1787 (2006).

DFT-D functional

$$\sum_{i+1}^{4} rac{C_6^{ij}}{R_{ij}^6} f_{\mathrm{dmp}}(R_{ij}), \quad f_{\mathrm{dmp}}(R_{ij}) = rac{1}{1+e^{-d(R_{ij}/R_{ij})}}$$

Element	<i>C</i> ₆	R_0	Element	<i>C</i> ₆	R_0
Н	0.14	1.001	K	10.80 ^c	1.485
He	0.08	1.012	Ca	10.80 ^c	1.474
Li	1.61	0.825	Sc–Zn	10.80 ^c	1.562 ^d
Be	1.61	1.408	Ga	16.99	1.650
В	3.13	1.485	Ge	17.10	1.727
С	1.75	1.452	As	16.37	1.760
Ν	1.23	1.397	Se	12.64	1.771
Ο	0.70	1.342	Br	12.47	1.749
F	0.75	1.287	Kr	12.01	1.727
Ne	0.63	1.243	Rb	24.67 ^c	1.628
Na	5.71 ^c	1.144	Sr	24.67 ^c	1.606
Mg	5.71 ^c	1.364	Y–Cd	24.67 ^c	1.639 ^d
Al	10.79	1.639	In	37.32	1.672
Si	9.23	1.716	Sn	38.71	1.804
Р	7.84	1.705	Sb	38.44	1.881
S	5.57	1.683	Te	31.74	1.892
Cl	5.07	1.639	Ι	31.50	1.892
Ar	4.61	1.595	Xe	29.99	1.881

V. Barone et al., J. Comput. Chem. 30, 934 (2008).

$E_{\text{DFT-D3}} = E_{\text{KS-DFT}} - E_{\text{vdW}}$

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, JCP 132, 154104 (2010).

DFT-D3 functional

 $E_{\rm vdW} = E^{(2)} + E^{(3)}$

$$E_{\rm DFT-D3} = E_{\rm KS-DFT} - E_{\rm vdW}$$

Two-body term:

$$E^{(2)} = \sum_{AB} \sum_{n=6,8,10,\dots} s_n \frac{C_n^{AB}}{r_{AB}^n} f_{d,n}(r_{AB})$$

$$f_{d,n}(r_{AB}) = \frac{1}{1 + 6(r_{AB}/(s_{r,n}R_0^{AB}))^{-\alpha_n}}$$

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, JCP 132, 154104 (2010).

DFT-D3 functional

 $E_{\rm vdW} = E^{(2)} + E^{(3)}$

$$E_{\rm DFT-D3} = E_{\rm KS-DFT} - E_{\rm vdW}$$

Two-body term:

$$E^{(2)} = \sum_{AB} \sum_{n=6,8,10,\dots} s_n \frac{C_n^{AB}}{r_{AB}^n} f_{d,n}(r_{AB})$$

$$f_{d,n}(r_{AB}) = \frac{1}{1 + 6(r_{AB}/(s_{r,n}R_0^{AB}))^{-\alpha_n}}$$

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, JCP 132, 154104 (2010).

DFT-D3 functional

$$E_{\rm vdW} = E^{(2)} + E^{(3)}$$

Three-body term:

$$E^{(3)} = \sum_{ABC} f_{d,(3)}(\overline{r}_{ABC}) E^{ABC}$$

$$E^{ABC} = \frac{C_9^{ABC} (3 \cos \theta_a \cos \theta_b \cos \theta_c + 1)}{(r_{AB} r_{BC} r_{CA})^3}$$

Tkatchenko-Scheffler (TS) functional

$$E_{\rm vdW} = -\frac{1}{2} \sum_{A,B} f_{\rm dam}$$

A. Tkatchenko and M. Scheffler, PRL 102, 073005 (2009).

 $(R_{AB}, R_A^0, R_B^0) C_{6AB} R_{AB}^{-6}$

Dispersion coefficients are computed from first principles using the electronic charge density

Tkatchenko-Scheffler (TS) functional

$$E_{\rm vdW} = -\frac{1}{2} \sum_{A,B} f_{\rm dar}$$

$$C_{6AB} = \frac{2C_{6AA}C_{6BB}}{\left[\frac{\alpha_B^0}{\alpha_A^0}C_{6AA} + \frac{\alpha_A^0}{\alpha_B^0}C_{6BB}\right]}$$
$$C_{6AA} = \frac{\eta_A^{\text{eff}}}{\eta_A^{\text{free}}} \left(\frac{\kappa_A^{\text{free}}}{\kappa_A^{\text{eff}}}\right)^2 \left(\frac{V_A^{\text{eff}}}{V_A^{\text{free}}}\right)^2 C_{6AA}^{\text{free}}$$

A. Tkatchenko and M. Scheffler, PRL 102, 073005 (2009).

 $mp(R_{AB}, R_A^0, R_B^0)C_{6AB}R_{AB}^{-6}$

Dispersion coefficients are computed from first principles using the electronic charge density

Tkatchenko-Scheffler (TS) functional

$$E_{\rm vdW} = -\frac{1}{2} \sum_{A,B} f_{\rm dar}$$

$$C_{6AB} = \frac{2C_{6AA}C_{6BB}}{\left[\frac{\alpha_B^0}{\alpha_A^0}C_{6AA} + \frac{\alpha_A^0}{\alpha_B^0}C_{6BB}\right]}$$
$$C_{6AA} = \frac{\eta_A^{\text{eff}}}{\eta_A^{\text{free}}} \left(\frac{\kappa_A^{\text{free}}}{\kappa_A^{\text{eff}}}\right)^2 \left(\frac{V_A^{\text{eff}}}{V_A^{\text{free}}}\right)^2 C_{6AA}^{\text{free}}$$

A. Tkatchenko and M. Scheffler, PRL 102, 073005 (2009).

 $mp(R_{AB}, R_A^0, R_B^0)C_{6AB}R_{AB}^{-6}$

Dispersion coefficients are computed from first principles using the electronic charge density

Hirshfeld partitioning of the electronic charge density:

$$\frac{\kappa_A^{\text{eff}}}{\kappa_A^{\text{free}}} \frac{\alpha_A^{\text{eff}}}{\alpha_A^{\text{free}}} = \frac{V_A^{\text{eff}}}{V_A^{\text{free}}} = \left(\frac{\int r^3 w_A(\mathbf{r}) n(\mathbf{r}) d^3 \mathbf{r}}{\int r^3 n_A^{\text{free}}(\mathbf{r}) d^3 \mathbf{r}}\right)$$
$$w_A(\mathbf{r}) = \frac{n_A^{\text{free}}(\mathbf{r})}{\sum_B n_B^{\text{free}}(\mathbf{r})},$$

Two types of vdW functionals

Empirical (or ab initio) corrections

vdW functionals

Fully nonlocal functionals $\frac{1}{2} \iint n(\mathbf{r}) \Phi(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') d\mathbf{r} d\mathbf{r}'$

 $E_c[n] =$ Nonlocal correlation energy:

 $E_c^{nl}[n]$ is defined to include the longest ranged or most nonlocal terms that give the vdW interaction and to approach zero in the limit of a slowly varying density. The term $E_c^0[n]$ is also nonlocal, but approaches the LDA in this limit.

$$\underline{E_{\mathbf{c}}^{\mathrm{nl}}} = \frac{1}{2} \int \int n(\mathbf{r}) \Phi\left(n(\mathbf{r}), n(\mathbf{r}'), |\nabla n(\mathbf{r})|, |\nabla n(\mathbf{r}')|, |\mathbf{r} - \mathbf{r}'|\right) n(\mathbf{r}') \, d\mathbf{r} \, d\mathbf{r}'$$
nonlocal kernel

There are different numerical methods and approximations how to compute $E_c^{nl}[n]$

$$E_{\rm c}^0[n] + E_{\rm c}^{\rm nl}[n]$$

vdW-DF

vdW-DF2

VV10

rVV10

M. Dion et al., PRL 92, 246401 (2004).

K. Lee et al., PRB 82, 081101(R) (2010).

O.A. Vydrov and T. Van Voorhis, JCP 133, 244103 (2010).

R. Sabatini, T. Gorni, S. de Gironcoli, PRB 87, 041108(R) (2013).

Binding energy curves for the Ar dimer

R. Sabatini, T. Gorni, S. De Gironcoli, PRB 87, 041108(R) (2013).

Examples

Ar

P.L. Silvestrelli and A. Ambrosetti, JCP 140, 124107 (2014).

Examples

Can we mix advanced functionals?

(meta-GGA) + (van der Waals) + (Hubbard U)

TABLE II. The calculated total energy with respect to the RS phase (ΔE in meV/f.u.), equilibrium volume (Ω_0 in Å³/f.u.), bulk modulus (B_0 in GPa), and fundamental band gap (E_g in eV) for MnO, FeO, CoO, and NiO in both RS and ZB structures, using PBE+TS+U and SCAN+rVV10+U. The experimental data are collected in Refs. [17,18].

		PBE+TS+U					SCAN+rVV10+U			Experiment		
Compound		ΔE	Ω_0	B_0	E_g	ΔE	Ω_0	B_0	E_g	Ω_0	B_0	Eg
MnO	RS ZB	0 88	21.58 26.47	156 102	1.8 0.8	0 138	21.71 26.43	164 120	2.3 1.1	21.96	151–162	3.8–4.2
FeO	RS ZB	0 142	20.25 24.34	150 107	1.2 0.3	0 157	20.28 23.15	163 84	1.4 0.8	20.35	150–180	2.4
CoO	RS ZB	0 51	19.06 23.53	184 137	2.3 1.4	0 92	19.08 23.45	186 146	2.9 1.7	19.25	180	3.6
NiO	RS ZB	0 768	17.76 20.55	205 56	2.5 0.9	0 782	17.94 21.16	220 85	3.5 1.5	18.14	166–208	3.7–4.3

H. Peng and J. P. Perdew, PRB 96, 100101(R) (2017).

The Quantum ESPRESSO package

P. Giannozzi et al., JPCM (2009).

P. Giannozzi, ..., I. Timrov et al., JPCM (2017) & JCP (2020). 78

2 PhD positions at PSI

Computational discovery, design, and characterization of novel Na-ion battery cathode materials

- throughput screening"
- substitutional doping"

Start date: 1 September 2024 (flexible)

To apply: <u>iurii.timrov@psi.ch</u>

Ist position (Discovery): Will be between PSI and EPFL and co-supervised by Dr. lurii Timrov (PSI) and Prof. Nicola Marzari (EPFL/PSI). Title "Discovery of novel Na-ion battery cathode materials via high-

• 2nd position (Design): Will be between PSI and ETH Zurich and co-supervised by Dr. lurii Timrov (PSI) and Prof. Claude Ederer (ETH Zurich). Title "Design of novel Na-ion battery cathode materials via

