PAUL SCHERRER INSTITUT

Aline Ramires :: Ambizione Fellow :: Junior Group Leader Condensed Matter Theory Group
Paul Scherrer Institute

Introduction to group theory and the classification of [superconducting] states

European School on Superconductivity and Magnetism in Quantum Materials Valencia-21-25 April 2024

Acknowledgements

Manfred Sigrist ETHZ

Daniel Agterberg
U. Wisconsin

Carsten Timm TU Dresden

Philip Brydon Otago U.

Sophie Beck Flatiron

Alexander Hampel Flatiron

Manuel Zingl BAWAG

Swiss National

 Science Foundation
Outline

Brief introduction to group theory concepts:
Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations

Crystallographic Point Groups:
\Rightarrow SC order parameter classification [Sigrist-Ueda]
\Rightarrow Conventional/unconventional
\Rightarrow Nematic/Chiral
Beyond the Sigrist-Ueda Classification:
\Rightarrow Multiple internal DOFs (orbitals/layers/sublattices)
\Rightarrow Nonsymmorphic symmetries

Introduction to Group Theory

Bibliography

M. Hamermesh, Group Theory and its Application to Physical Problems, AddisonWesley (1962);
C. J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups, Claredon Press (1972);
M.S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory Application to the Physics of Condensed Matter, Springer (2008).

What is a group?

What is a group?

Definition: A group \mathbf{G} is a set of elements together with a composition law (.), also referred to as product or multiplication law, such that:

1. The product of any two elements is a member of the group:
if A and $B \in \mathbf{G}$, then $A . B \in \mathbf{G}$;
2. The product is associative:
$A .(B . C)=(A . B) \cdot C$ for all $A, B, C \in \mathbf{G} ;$
3. There exists a unique identity element E :
$E . A=A . E=A$ for all $A \in \mathbf{G} ;$
4. Every element has a unique inverse:
given $A \in \mathbf{G}$, there exists an element A^{-1} such that $A \cdot A^{-1}=A^{-1} \cdot A=E$.

Additive Group of the Integers

Example A: The integer numbers (...-2,-1,0,1,2,...) with the operation of addition (+) is called the additive group of the integers. The requirements above hold:

1. The composition law (here addition) of any two elements is a member of the group:
$1+1=2,2+7=9,(-5)+3=(-2),(-1)+(-3)=(-4), \ldots$
2. The composition is associative:
$1+5+(-3)=(1+5)+(-3)=6+(-3)=3$
$1+5+(-3)=1+[5+(-3)]=1+2=3$
3. There exists a unique identity element $E=0$:
$1+0=1,3+0=3,(-5)+0=(-5), \ldots$
4. Every element has a unique inverse (the element with opposite sign):
$1+(-1)=0,(-3)+3=0, \ldots$

Additive Group of the Integers

Example A: The integer numbers (...-2,-1, $0,1,2, \ldots$) with the operation of addition $(+)$ is called the additive group of the integers. The requirements above hold:

1. The composition law (here addition) of any two elements is a member of the group:
$1+1=2,2+7=9,(-5)+3=(-2),(-1)+(-3)=(-4), \ldots$
2. The composition is associative:
$1+5+(-3)=(1+5)+(-3)=6+(-3)=3$
$1+5+(-3)=1+[5+(-3)]=1+2=3$
3. There exists a unique identity element $E=0$:
$1+0=1,3+0=3,(-5)+0=(-5), \ldots$
4. Every element has a unique inverse (the element with opposite sign):
$1+(-1)=0,(-3)+3=0, \ldots$

Additive Group of the Integers

Example A: The integer numbers (...-2,-1,0,1,2,...) with the operation of addition (+) is called the additive group of the integers. The requirements above hold:

1. The composition law (here addition) of any two elements is a member of the group:
$1+1=2,2+7=9,(-5)+3=(-2),(-1)+(-3)=(-4), \ldots$
2. The composition is associative:
$1+5+(-3)=(1+5)+(-3)=6+(-3)=3$
$1+5+(-3)=1+[5+(-3)]=1+2=3$
3. There exists a unique identity element $E=0$:
$1+0=1,3+0=3,(-5)+0=(-5), \ldots$
4. Every element has a unique inverse (the element with opposite sign):
$1+(-1)=0,(-3)+3=0, \ldots$

Additive Group of the Integers

Example A: The integer numbers (...-2,-1, $0,1,2, \ldots$) with the operation of addition $(+)$ is called the additive group of the integers. The requirements above hold:

1. The composition law (here addition) of any two elements is a member of the group:
$1+1=2,2+7=9,(-5)+3=(-2),(-1)+(-3)=(-4), \ldots$
2. The composition is associative:
$1+5+(-3)=(1+5)+(-3)=6+(-3)=3$
$1+5+(-3)=1+[5+(-3)]=1+2=3$
3. There exists a unique identity element $E=0$:
$1+0=1,3+0=3,(-5)+0=(-5), \ldots$
4. Every element has a unique inverse (the element with opposite sign):
$1+(-1)=0,(-3)+3=0, \ldots$

Additive Group of the Integers

Example A: The integer numbers (...-2,-1,0,1,2,...) with the operation of addition (+) is called the additive group of the integers. The requirements above hold:

1. The composition law (here addition) of any two elements is a member of the group:
$1+1=2,2+7=9,(-5)+3=(-2),(-1)+(-3)=(-4), \ldots$
2. The composition is associative:
$1+5+(-3)=(1+5)+(-3)=6+(-3)=3$
$1+5+(-3)=1+[5+(-3)]=1+2=3$
3. There exists a unique identity element $E=0$:
$1+0=1,3+0=3,(-5)+0=(-5), \ldots$
4. Every element has a unique inverse (the element with opposite sign):
$1+(-1)=0,(-3)+3=0, \ldots$

Additive Group of the Integers

Example A: The integer numbers (...-2,-1,0,1,2,...) with the operation of addition (+) is called the additive group of the integers. The requirements above hold:

1. The composition law (here addition) of any two elements is a member of the group:
$1+1=2,2+7=9,(-5)+3=(-2),(-1)+(-3)=(-4), \ldots$
2. The composition is associative:
$1+5+(-3)=(1+5)+(-3)=6+(-3)=3$
$1+5+(-3)=1+[5+(-3)]=1+2=3$
3. There exists a unique identity element $E=0$:
$1+0=1,3+0=3,(-5)+0=(-5), \ldots$
4. Every element has a unique inverse (the element with opposite sign):
$1+(-1)=0,(-3)+3=0, \ldots$

Order of the group: number of elements in the group
[The additive group of the integers is infinite]

Group of Symmetries of the Equilateral Triangle

Example B: The group of transformations of the equilateral triangle. The group is composed of the identity, rotations by $120^{\circ}\left(R_{1}\right)$ and $240^{\circ}\left(R_{2}\right)$ around the axis passing through the center of the triangle (coming out of the page), and reflections at three different mirror planes which pass though the center and the triangle's edges: M_{i} with $i=1,2,3$, as indicated in Fig. 1.

Group of Symmetries of the Equilateral Triangle

Example B: The group of transformations of the equilateral triangle. The group is composed of the identity, rotations by $120^{\circ}\left(R_{1}\right)$ and $240^{\circ}\left(R_{2}\right)$ around the axis passing through the center of the triangle (coming out of the page), and reflections at three different mirror planes which pass though the center and the triangle's edges: M_{i} with $i=1,2,3$, as indicated in Fig. 1.

six operations in the group: $E, R_{1}, R_{2}, M_{1}, M_{2}, M_{3}$.
Order of the group: number of elements in the group
[The group of symmetries of the equilateral triangle has order 6]

Group of Symmetries of the Equilateral Triangle

1. The "product" (here the composition) of any two elements is a member of the group Convention: Apply first the right most operation.

For the rotations:

$$
\begin{aligned}
& R_{1} \cdot R_{1}=R_{2} \\
& R_{1} \cdot R_{2}=E \\
& R_{2} \cdot R_{1}=E \\
& R_{2} \cdot R_{2}=R_{1}
\end{aligned}
$$

rotations by $120^{\circ}\left(R_{1}\right)$ and $240^{\circ}\left(R_{2}\right)$

Group of Symmetries of the Equilateral Triangle

1. The "product" (here the composition) of any two elements is a member of the group Convention: Apply first the right most operation.

For the mirror operations
$M_{i} \cdot M_{i}=E$ for $i=1,2,3$
$M_{1} \cdot M_{2}=R_{2}$
$M_{2} \cdot M_{1}=R_{1}$

(you can check the remaining combinations)

Group of Symmetries of the Equilateral Triangle

1. The "product" (here the composition) of any two elements is a member of the group (note that the right most operation is the one to be applied first):

Mixing rotations and mirror operations

$$
R_{1} \cdot M_{1}=M_{2}
$$

$$
M_{1} \cdot R_{1}=M_{3}
$$

(you can check the remaining combinations)

Group of Symmetries of the Equilateral Triangle

1. The product of any two elements is a member of the group:
if A and $B \in \mathbf{G}$, then $A . B \in \mathbf{G}$;

There is a total of 36 pairs of operations to be checked. You can check that all combinations result in one of the six operations in the group: $E, R_{1}, R_{2}, M_{1}, M_{2}, M_{3}$.

Multiplication Table

	\mathbf{E}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$
\mathbf{E}	E	R_{1}	R_{2}	M_{1}	M_{2}	M_{3}
$\mathbf{R}_{\mathbf{1}}$	R_{1}	R_{2}	E	M_{2}	M_{3}	M_{1}
$\mathbf{R}_{\mathbf{2}}$	R_{2}	E	R_{1}	M_{3}	M_{1}	M_{2}
$\mathbf{M}_{\mathbf{1}}$	M_{1}	M_{3}	M_{2}	E	R_{2}	R_{1}
$\mathbf{M}_{\mathbf{2}}$	M_{2}	M_{1}	M_{3}	R_{1}	E	R_{2}
$\mathbf{M}_{\mathbf{3}}$	M_{3}	M_{2}	M_{1}	R_{2}	R_{1}	E

Group of Symmetries of the Equilateral Triangle

1. The product of any two elements is a member of the group:
if A and $B \in \mathbf{G}$, then $A . B \in \mathbf{G}$;

There is a total of 36 pairs of operations to be checked. You can check that all combinations result in one of the six operations in the group: $E, R_{1}, R_{2}, M_{1}, M_{2}, M_{3}$.

Multiplication Table

	\mathbf{E}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$
\mathbf{E}	E	R_{1}	R_{2}	M_{1}	M_{2}	M_{3}
$\mathbf{R}_{\mathbf{1}}$	R_{1}	R_{2}	E	M_{2}	M_{3}	M_{1}
$\mathbf{R}_{\mathbf{2}}$	R_{2}	E	R_{1}	M_{3}	M_{1}	M_{2}
$\mathbf{M}_{\mathbf{1}}$	M_{1}	M_{3}	M_{2}	E	R_{2}	R_{1}
$\mathbf{M}_{\mathbf{2}}$	M_{2}	M_{1}	M_{3}	R_{1}	E	R_{2}
$\mathbf{M}_{\mathbf{3}}$	M_{3}	M_{2}	M_{1}	R_{2}	R_{1}	E

Group of Symmetries of the Equilateral Triangle

Multiplication Table

2. The product is associative:
$A .(B . C)=(A . B) \cdot C$ for all $A, B, C \in \mathbf{G} ;$

	\mathbf{E}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$
\mathbf{E}	E	R_{1}	R_{2}	M_{1}	M_{2}	M_{3}
$\mathbf{R}_{\mathbf{1}}$	R_{1}	R_{2}	E	M_{2}	M_{3}	M_{1}
$\mathbf{R}_{\mathbf{2}}$	R_{2}	E	R_{1}	M_{3}	M_{1}	M_{2}
$\mathbf{M}_{\mathbf{1}}$	M_{1}	M_{3}	M_{2}	E	R_{2}	R_{1}
$\mathbf{M}_{\mathbf{2}}$	M_{2}	M_{1}	M_{3}	R_{1}	E	R_{2}
$\mathbf{M}_{\mathbf{3}}$	M_{3}	M_{2}	M_{1}	R_{2}	R_{1}	E

3. There exists a unique identity element E :
$E \cdot A=A \cdot E=A$ for all $A \in \mathbf{G} ;$
4. Every element has a unique inverse:
given $A \in \mathbf{G}$, there exists an element A^{-1} such that $A \cdot A^{-1}=A^{-1} \cdot A=E$.

Group of Symmetries of the Equilateral Triangle

Multiplication Table

2. The product is associative:
$A .(B . C)=(A \cdot B) \cdot C$ for all $A, B, C \in \mathbf{G} ;$

	\mathbf{E}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$
\mathbf{E}	E	R_{1}	R_{2}	M_{1}	M_{2}	M_{3}
$\mathbf{R}_{\mathbf{1}}$	R_{1}	R_{2}	E	M_{2}	M_{3}	M_{1}
$\mathbf{R}_{\mathbf{2}}$	R_{2}	E	R_{1}	M_{3}	M_{1}	M_{2}
$\mathbf{M}_{\mathbf{1}}$	M_{1}	M_{3}	M_{2}	E	R_{2}	R_{1}
$\mathbf{M}_{\mathbf{2}}$	M_{2}	M_{1}	M_{3}	R_{1}	E	R_{2}
$\mathbf{M}_{\mathbf{3}}$	M_{3}	M_{2}	M_{1}	R_{2}	R_{1}	E

3. There exists a unique identity element E :
$E . A=A \cdot E=A$ for all $A \in \mathbf{G} ;$
4. Every element has a unique inverse:
given $A \in \mathbf{G}$, there exists an element A^{-1} such that $A \cdot A^{-1}=A^{-1} \cdot A=E$.

Group of Symmetries of the Equilateral Triangle

Multiplication Table

2. The product is associative:
$A .(B \cdot C)=(A \cdot B) \cdot C$ for all $A, B, C \in \mathbf{G} ;$

	\mathbf{E}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$
\mathbf{E}	E	R_{1}	R_{2}	M_{1}	M_{2}	M_{3}
$\mathbf{R}_{\mathbf{1}}$	R_{1}	R_{2}	E	M_{2}	M_{3}	M_{1}
$\mathbf{R}_{\mathbf{2}}$	R_{2}	E	R_{1}	M_{3}	M_{1}	M_{2}
$\mathbf{M}_{\mathbf{1}}$	M_{1}	M_{3}	M_{2}	E	R_{2}	R_{1}
$\mathbf{M}_{\mathbf{2}}$	M_{2}	M_{1}	M_{3}	R_{1}	E	R_{2}
$\mathbf{M}_{\mathbf{3}}$	M_{3}	M_{2}	M_{1}	R_{2}	R_{1}	E

3. There exists a unique identity element E :
$E \cdot A=A \cdot E=A$ for all $A \in \mathbf{G} ;$
4. Every element has a unique inverse:
given $A \in \mathbf{G}$, there exists an element A^{-1} such that $A \cdot A^{-1}=A^{-1} \cdot A=E$.

Group of Symmetries of the Equilateral Triangle

Multiplication Table

2. The product is associative:
$A .(B . C)=(A \cdot B) \cdot C$ for all $A, B, C \in \mathbf{G} ;$

	\mathbf{E}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$
\mathbf{E}	E	R_{1}	R_{2}	M_{1}	M_{2}	M_{3}
$\mathbf{R}_{\mathbf{1}}$	R_{1}	R_{2}	E	M_{2}	M_{3}	M_{1}
$\mathbf{R}_{\mathbf{2}}$	R_{2}	E	R_{1}	M_{3}	M_{1}	M_{2}
$\mathbf{M}_{\mathbf{1}}$	M_{1}	M_{3}	M_{2}	E	R_{2}	R_{1}
$\mathbf{M}_{\mathbf{2}}$	M_{2}	M_{1}	M_{3}	R_{1}	E	R_{2}
$\mathbf{M}_{\mathbf{3}}$	M_{3}	M_{2}	M_{1}	R_{2}	R_{1}	E

3. There exists a unique identity element E :
$E \cdot A=A \cdot E=A$ for all $A \in \mathbf{G} ;$
4. Every element has a unique inverse:
given $A \in \mathbf{G}$, there exists an element A^{-1} such that $A \cdot A^{-1}=A^{-1} \cdot A=E$.

Group of Symmetries of the Equilateral Triangle

Multiplication Table

2. The product is associative:

$$
A .(B \cdot C)=(A \cdot B) \cdot C \text { for all } A, B, C \in \mathbf{G}
$$

	\mathbf{E}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$
\mathbf{E}	E	R_{1}	R_{2}	M_{1}	M_{2}	M_{3}
$\mathbf{R}_{\mathbf{1}}$	R_{1}	R_{2}	E	M_{2}	M_{3}	M_{1}
$\mathbf{R}_{\mathbf{2}}$	R_{2}	E	R_{1}	M_{3}	M_{1}	M_{2}
$\mathbf{M}_{\mathbf{1}}$	M_{1}	M_{3}	M_{2}	E	R_{2}	R_{1}
$\mathbf{M}_{\mathbf{2}}$	M_{2}	M_{1}	M_{3}	R_{1}	E	R_{2}
$\mathbf{M}_{\mathbf{3}}$	M_{3}	M_{2}	M_{1}	R_{2}	R_{1}	E

3. There exists a unique identity element E :
$E \cdot A=A \cdot E=A$ for all $A \in \mathbf{G} ;$
4. Every element has a unique inverse:
$\mathrm{C}_{3 v}$ point group [isomorphic to S_{3}]
given $A \in \mathbf{G}$, there exists an element A^{-1} such that $A \cdot A^{-1}=A^{-1} \cdot A=E$.

Conjugate Elements

Conjugate Elements: Two elements G_{1} and G_{2} are said to be conjugate if there exists an element G in \mathbf{G} such that $G_{1}=G G_{2} G^{-1}$;

Conjugate Elements

Conjugate Elements: Two elements G_{1} and G_{2} are said to be conjugate if there exists an element G in \mathbf{G} such that $G_{1}=G G_{2} G^{-1}$;

Group of Symmetries of the Equilateral triangle

	\mathbf{E}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$
\mathbf{E}	E	R_{1}	R_{2}	M_{1}	M_{2}	M_{3}
$\mathbf{R}_{\mathbf{1}}$	R_{1}	R_{2}	E	M_{2}	M_{3}	M_{1}
$\mathbf{R}_{\mathbf{2}}$	R_{2}	E	R_{1}	M_{3}	M_{1}	M_{2}
$\mathbf{M}_{\mathbf{1}}$	M_{1}	M_{3}	M_{2}	E	R_{2}	R_{1}
$\mathbf{M}_{\mathbf{2}}$	M_{2}	M_{1}	M_{3}	R_{1}	E	R_{2}
$\mathbf{M}_{\mathbf{3}}$	M_{3}	M_{2}	M_{1}	R_{2}	R_{1}	E

Conjugate Elements

Conjugate Elements: Two elements G_{1} and G_{2} are said to be conjugate if there exists an element G in \mathbf{G} such that $G_{1}=G G_{2} G^{-1}$;

Group of Symmetries of the Equilateral triangle

I) Identity: $G \cdot E \cdot G^{-1}=G \cdot G^{-1} \cdot E=E$
E is not conjugate to any other element

	\mathbf{E}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$
\mathbf{E}	E	R_{1}	R_{2}	M_{1}	M_{2}	M_{3}
$\mathbf{R}_{\mathbf{1}}$	R_{1}	R_{2}	E	M_{2}	M_{3}	M_{1}
$\mathbf{R}_{\mathbf{2}}$	R_{2}	E	R_{1}	M_{3}	M_{1}	M_{2}
$\mathbf{M}_{\mathbf{1}}$	M_{1}	M_{3}	M_{2}	E	R_{2}	R_{1}
$\mathbf{M}_{\mathbf{2}}$	M_{2}	M_{1}	M_{3}	R_{1}	E	R_{2}
$\mathbf{M}_{\mathbf{3}}$	M_{3}	M_{2}	M_{1}	R_{2}	R_{1}	E

Conjugate Elements

Conjugate Elements: Two elements G_{1} and G_{2} are said to be conjugate if there exists an element G in \mathbf{G} such that $G_{1}=G G_{2} G^{-1}$;

Group of Symmetries of the Equilateral triangle

I) Identity: \quad G.E. $G^{-1}=G \cdot G^{-1} \cdot E=E$
E is not conjugate to any other element
II) Rotations: $\quad M_{i} \cdot R_{1} \cdot M_{i}^{-1}=M_{i} \cdot R_{1} M_{i}=R_{2}$

Rotations are conjugate to each other

	\mathbf{E}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$
\mathbf{E}	E	R_{1}	R_{2}	M_{1}	M_{2}	M_{3}
$\mathbf{R}_{\mathbf{1}}$	R_{1}	R_{2}	E	M_{2}	M_{3}	M_{1}
$\mathbf{R}_{\mathbf{2}}$	R_{2}	E	R_{1}	M_{3}	M_{1}	M_{2}
$\mathbf{M}_{\mathbf{1}}$	M_{1}	M_{3}	M_{2}	E	R_{2}	R_{1}
$\mathbf{M}_{\mathbf{2}}$	M_{2}	M_{1}	M_{3}	R_{1}	E	R_{2}
$\mathbf{M}_{\mathbf{3}}$	M_{3}	M_{2}	M_{1}	R_{2}	R_{1}	E

Conjugate Elements

Conjugate Elements: Two elements G_{1} and G_{2} are said to be conjugate if there exists an element G in \mathbf{G} such that $G_{1}=G G_{2} G^{-1}$;

Group of Symmetries of the Equilateral triangle

I) Identity: \quad G.E. $G^{-1}=G \cdot G^{-1} \cdot E=E$
E is not conjugate to any other element
II) Rotations: $\quad M_{i} \cdot R_{1} \cdot M_{i}^{-1}=M_{i} \cdot R_{1} M_{i}=R_{2}$

Rotations are conjugate to each other
III) Reflections: $\quad R_{1} \cdot M_{a} \cdot R_{1}^{-1}=R_{1} \cdot M_{a} \cdot R_{2}=M_{b}$

	\mathbf{E}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$
\mathbf{E}	E	R_{1}	R_{2}	M_{1}	M_{2}	M_{3}
$\mathbf{R}_{\mathbf{1}}$	R_{1}	R_{2}	E	M_{2}	M_{3}	M_{1}
$\mathbf{R}_{\mathbf{2}}$	R_{2}	E	R_{1}	M_{3}	M_{1}	M_{2}
$\mathbf{M}_{\mathbf{1}}$	M_{1}	M_{3}	M_{2}	E	R_{2}	R_{1}
$\mathbf{M}_{\mathbf{2}}$	M_{2}	M_{1}	M_{3}	R_{1}	E	R_{2}
$\mathbf{M}_{\mathbf{3}}$	M_{3}	M_{2}	M_{1}	R_{2}	R_{1}	E

$$
a=\{1,2,3\} \text { and } b=\{3,1,2\}
$$

Reflections are conjugate among themselves

Conjugacy Classes

Conjugacy classes: The elements of a group can be split into conjugacy classes $C_{1}, C_{2}, C_{3}, \ldots$ such that the following properties hold:

1. Every element of \mathbf{G} is in some class and no element of \mathbf{G} is in more than one class such that $\mathbf{G}=C_{1}+C_{2}+C_{3}+\ldots$;
2. All elements in a given class are mutually conjugate and consequently have the same order;
3. An element that commutes with all other elements of the group is on a class by itself;
4. The number of elements in a class is a divisor of the order of the group;

Conjugacy Classes

Conjugacy classes: The elements of a group can be split into conjugacy classes $C_{1}, C_{2}, C_{3}, \ldots$ such that the following properties hold:

1. Every element of \mathbf{G} is in some class and no element of \mathbf{G} is in more than one class such that $\mathbf{G}=C_{1}+C_{2}+C_{3}+\ldots$;
2. All elements in a given class are mutually conjugate and consequently have the same order;
3. An element that commutes with all other elements of the group is on a class by itself;
4. The number of elements in a class is a divisor of the order of the group;

Order of an element: the number of times the element needs to be applied to be equal to the identity.

Conjugacy Classes

Conjugacy classes: The elements of a group can be split into conjugacy classes $C_{1}, C_{2}, C_{3}, \ldots$ such that the following properties hold:

1. Every element of \mathbf{G} is in some class and no element of \mathbf{G} is in more than one class such that $\mathbf{G}=C_{1}+C_{2}+C_{3}+\ldots$;
2. All elements in a given class are mutually conjugate and consequently have the same order; $\quad\left(G_{1}\right)^{N}=\left(G \cdot G_{2} \cdot G^{-1}\right)^{N}=\left(G \cdot G_{2} \cdot G^{-1}\right) \cdot\left(G \cdot G_{2} \cdot G^{-1}\right) \cdot\left(G \cdot G_{2} \cdot G^{-1}\right) \ldots\left(G \cdot G_{2} \cdot G^{-1}\right)$

$$
\left(G_{1}\right)^{N}=1 \Rightarrow\left(G \cdot\left(G_{2}\right)^{N} \cdot G^{-1}\right)=1 \Rightarrow\left(G_{2}\right)^{N}=1
$$

3. An element that commutes with all other elements of the group is on a class by itself;
4. The number of elements in a class is a divisor of the order of the group;

Order of an element: the number of times the element needs to be applied to be equal to the identity.

Conjugacy Classes

Conjugacy classes: The elements of a group can be split into conjugacy classes $C_{1}, C_{2}, C_{3}, \ldots$ such that the following properties hold:

1. Every element of \mathbf{G} is in some class and no element of \mathbf{G} is in more than one class such that $\mathbf{G}=C_{1}+C_{2}+C_{3}+\ldots$;
2. All elements in a given class are mutually conjugate and consequently have the same order; $\quad\left(G_{1}\right)^{N}=\left(G \cdot G_{2} \cdot G^{-1}\right)^{N}=\left(G \cdot G_{2} \cdot G^{-1}\right) \cdot\left(G \cdot G_{2} \cdot G^{-1}\right) \cdot\left(G \cdot G_{2} \cdot G^{-1}\right) \ldots\left(G \cdot G_{2} \cdot G^{-1}\right)$ $\left(G_{1}\right)^{N}=1 \Rightarrow\left(G \cdot\left(G_{2}\right)^{N} \cdot G^{-1}\right)=1 \Rightarrow\left(G_{2}\right)^{N}=1$
3. An element that commutes with all other elements of the group is on a class by itself; Always the case for the identity!
4. The number of elements in a class is a divisor of the order of the group;

Order of an element: the number of times the element needs to be applied to be equal to the identity.

Conjugacy Classes

Conjugacy classes: The elements of a group can be split into conjugacy classes $C_{1}, C_{2}, C_{3}, \ldots$ such that the following properties hold:

1. Every element of \mathbf{G} is in some class and no element of \mathbf{G} is in more than one class such that $\mathbf{G}=C_{1}+C_{2}+C_{3}+\ldots$;
2. All elements in a given class are mutually conjugate and consequently have the same order; $\quad\left(G_{1}\right)^{N}=\left(G \cdot G_{2} \cdot G^{-1}\right)^{N}=\left(G \cdot G_{2} \cdot G^{-1}\right) \cdot\left(G \cdot G_{2} \cdot G^{-1}\right) \cdot\left(G \cdot G_{2} \cdot G^{-1}\right) \ldots\left(G \cdot G_{2} \cdot G^{-1}\right)$ $\left(G_{1}\right)^{N}=1 \Rightarrow\left(G \cdot\left(G_{2}\right)^{N} \cdot G^{-1}\right)=1 \Rightarrow\left(G_{2}\right)^{N}=1$
3. An element that commutes with all other elements of the group is on a class by itself; Always the case for the identity!
4. The number of elements in a class is a divisor of the order of the group;

$$
\begin{gathered}
C_{1}=\{E\} \\
C_{2}=\left\{R_{1}, R_{2}\right\} \\
C_{3}=\left\{M_{1}, M_{2}, M_{3}\right\}
\end{gathered}
$$

Order of an element: the number of times the element needs to be applied to be equal to the identity.

Conjugacy Classes

Conjugacy classes: The elements of a group can be split into conjugacy classes $C_{1}, C_{2}, C_{3}, \ldots$ such that the following properties hold:

1. Every element of \mathbf{G} is in some class and no element of \mathbf{G} is in more than one class such that $\mathbf{G}=C_{1}+C_{2}+C_{3}+\ldots$;
2. All elements in a given class are mutually conjugate and consequently have the same order; $\quad\left(G_{1}\right)^{N}=\left(G \cdot G_{2} \cdot G^{-1}\right)^{N}=\left(G \cdot G_{2} \cdot G^{-1}\right) \cdot\left(G \cdot G_{2} \cdot G^{-1}\right) \cdot\left(G \cdot G_{2} \cdot G^{-1}\right) \ldots\left(G \cdot G_{2} \cdot G^{-1}\right)$ $\left(G_{1}\right)^{N}=1 \Rightarrow\left(G \cdot\left(G_{2}\right)^{N} \cdot G^{-1}\right)=1 \Rightarrow\left(G_{2}\right)^{N}=1$
3. An element that commutes with all other elements of the group is on a class by itself; Always the case for the identity!
4. The number of elements in a class is a divisor of the order of the group;

$$
\begin{array}{cc}
C_{1}=\{E\} & 1 \text { element/order 1 } \\
C_{2}=\left\{R_{1}, R_{2}\right\} & 2 \text { elements/order 3 } \\
C_{3}=\left\{M_{1}, M_{2}, M_{3}\right\} & 3 \text { elements/order 2 }
\end{array}
$$

Order of an element: the number of times the element needs to be applied to be equal to the identity.

Conjugacy Classes

Conjugacy classes: The elements of a group can be split into conjugacy classes $C_{1}, C_{2}, C_{3}, \ldots$ such that the following properties hold:

1. Every element of \mathbf{G} is in some class and no element of \mathbf{G} is in more than one class such that $\mathbf{G}=C_{1}+C_{2}+C_{3}+\ldots$;
2. All elements in a given class are mutually conjugate and consequently have the same order; $\quad\left(G_{1}\right)^{N}=\left(G \cdot G_{2} \cdot G^{-1}\right)^{N}=\left(G \cdot G_{2} \cdot G^{-1}\right) \cdot\left(G \cdot G_{2} \cdot G^{-1}\right) \cdot\left(G \cdot G_{2} \cdot G^{-1}\right) \ldots\left(G \cdot G_{2} \cdot G^{-1}\right)$ $\left(G_{1}\right)^{N}=1 \Rightarrow\left(G \cdot\left(G_{2}\right)^{N} \cdot G^{-1}\right)=1 \Rightarrow\left(G_{2}\right)^{N}=1$
3. An element that commutes with all other elements of the group is on a class by itself; Always the case for the identity!
4. The number of elements in a class is a divisor of the order of the group;

$$
\begin{array}{rc}
C_{1}=\{E\} & 1 \text { element/order 1 } \\
C_{2}=\left\{R_{1}, R_{2}\right\} & 2 \text { elements/order 3 } \\
C_{3}=\left\{M_{1}, M_{2}, M_{3}\right\} & 3 \text { elements/order 2 }
\end{array}
$$

Order of an element: the number of times the element needs to be applied to be equal to the identity.

Group Representation

Definition: A representation of a group \mathbf{G} is a mapping D of the elements of \mathbf{G} onto a set of linear operators (or matrices) with the following properties:
(i) $D(E)=1$, where 1 is the identity operator in the space on which the linear operator acts.
(ii) $D\left(G_{1}\right) D\left(G_{2}\right)=D\left(G_{1} G_{2}\right)$, meaning that the group multiplication law is preserved under the mapping.

Group Representation

Definition: A representation of a group \mathbf{G} is a mapping D of the elements of \mathbf{G} onto a set of linear operators (or matrices) with the following properties:
(i) $D(E)=1$, where 1 is the identity operator in the space on which the linear operator acts.
(ii) $D\left(G_{1}\right) D\left(G_{2}\right)=D\left(G_{1} G_{2}\right)$, meaning that the group multiplication law is preserved under the mapping.

Trivial representation:

associate the identity matrix (number one) to all elements of the group

Group Representation

Definition: A representation of a group \mathbf{G} is a mapping D of the elements of \mathbf{G} onto a set of linear operators (or matrices) with the following properties:
(i) $D(E)=1$, where 1 is the identity operator in the space on which the linear operator acts.
(ii) $D\left(G_{1}\right) D\left(G_{2}\right)=D\left(G_{1} G_{2}\right)$, meaning that the group multiplication law is preserved under the mapping.

Trivial representation:

associate the identity matrix (number one) to all elements of the group

	\mathbf{E}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$
\mathbf{E}	E	R_{1}	R_{2}	M_{1}	M_{2}	M_{3}
$\mathbf{R}_{\mathbf{1}}$	R_{1}	R_{2}	E	M_{2}	M_{3}	M_{1}
$\mathbf{R}_{\mathbf{2}}$	R_{2}	E	R_{1}	M_{3}	M_{1}	M_{2}
$\mathbf{M}_{\mathbf{1}}$	M_{1}	M_{3}	M_{2}	E	R_{2}	R_{1}
$\mathbf{M}_{\mathbf{2}}$	M_{2}	M_{1}	M_{3}	R_{1}	E	R_{2}
$\mathbf{M}_{\mathbf{3}}$	M_{3}	M_{2}	M_{1}	R_{2}	R_{1}	E

	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	1	1	1	1	1	1
$\mathbf{1}$	1	1	1	1	1	1
$\mathbf{1}$	1	1	1	1	1	1
$\mathbf{1}$	1	1	1	1	1	1
$\mathbf{1}$	1	1	1	1	1	1
$\mathbf{1}$	1	1	1	1	1	1

Group Representation

Definition: A representation of a group \mathbf{G} is a mapping D of the elements of \mathbf{G} onto a set of linear operators (or matrices) with the following properties:
(i) $D(E)=1$, where 1 is the identity operator in the space on which the linear operator acts.
(ii) $D\left(G_{1}\right) D\left(G_{2}\right)=D\left(G_{1} G_{2}\right)$, meaning that the group multiplication law is preserved under the mapping.

Trivial representation:

associate the identity matrix (number one) to all elements of the group

	\mathbf{E}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$
\mathbf{E}	E	R_{1}	R_{2}	M_{1}	M_{2}	M_{3}
$\mathbf{R}_{\mathbf{1}}$	R_{1}	R_{2}	E	M_{2}	M_{3}	M_{1}
$\mathbf{R}_{\mathbf{2}}$	R_{2}	E	R_{1}	M_{3}	M_{1}	M_{2}
$\mathbf{M}_{\mathbf{1}}$	M_{1}	M_{3}	M_{2}	E	R_{2}	R_{1}
$\mathbf{M}_{\mathbf{2}}$	M_{2}	M_{1}	M_{3}	R_{1}	E	R_{2}
$\mathbf{M}_{\mathbf{3}}$	M_{3}	M_{2}	M_{1}	R_{2}	R_{1}	E

Ok, but what about nontrivial representations?

Group Representation

Group of Symmetries of the Equilateral triangle

Thinking of transformations acting on the coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$):

$$
\begin{gathered}
R_{1}=\left(\begin{array}{ccc}
-1 / 2 & +\sqrt{3} / 2 & 0 \\
-\sqrt{3} / 2 & -1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right) \\
M_{1}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Group Representation

Group of Symmetries of the Equilateral triangle

Thinking of transformations acting on the coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$):

$$
\begin{gathered}
R_{1}=\left(\begin{array}{ccc}
-1 / 2 & +\sqrt{3} / 2 & 0 \\
-\sqrt{3} / 2 & -1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right) \\
M_{1}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

	\mathbf{E}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$
\mathbf{E}	E	R_{1}	R_{2}	M_{1}	M_{2}	M_{3}
$\mathbf{R}_{\mathbf{1}}$	R_{1}	R_{2}	E	M_{2}	M_{3}	M_{1}
$\mathbf{R}_{\mathbf{2}}$	R_{2}	E	R_{1}	M_{3}	M_{1}	M_{2}
$\mathbf{M}_{\mathbf{1}}$	M_{1}	M_{3}	M_{2}	E	R_{2}	R_{1}
$\mathbf{M}_{\mathbf{2}}$	M_{2}	M_{1}	M_{3}	R_{1}	E	R_{2}
$\mathbf{M}_{\mathbf{3}}$	M_{3}	M_{2}	M_{1}	R_{2}	R_{1}	E

You can check if matrices reproduce the structure of the group

Group Representation

Group of Symmetries of the Equilateral triangle

Thinking of transformations acting on the coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$):

$$
\begin{gathered}
R_{1}=\left(\begin{array}{ccc}
-1 / 2 & +\sqrt{3} / 2 & 0 \\
-\sqrt{3} / 2 & -1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right) \\
M_{1}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

	\mathbf{E}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$
\mathbf{E}	E	R_{1}	R_{2}	M_{1}	M_{2}	M_{3}
$\mathbf{R}_{\mathbf{1}}$	R_{1}	R_{2}	E	M_{2}	M_{3}	M_{1}
$\mathbf{R}_{\mathbf{2}}$	R_{2}	E	R_{1}	M_{3}	M_{1}	M_{2}
$\mathbf{M}_{\mathbf{1}}$	M_{1}	M_{3}	M_{2}	E	R_{2}	R_{1}
$\mathbf{M}_{\mathbf{2}}$	M_{2}	M_{1}	M_{3}	R_{1}	E	R_{2}
$\mathbf{M}_{\mathbf{3}}$	M_{3}	M_{2}	M_{1}	R_{2}	R_{1}	E

You can check if matrices reproduce the structure of the group

Dimension of the representation: the dimension of the space on which it acts

Group Representation

Group of Symmetries of the Equilateral triangle

Thinking of transformations acting on the coordinates (x, y, z):

$$
\begin{gathered}
R_{1}=\left(\begin{array}{ccc}
-1 / 2 & +\sqrt{3} / 2 & 0 \\
-\sqrt{3} / 2 & -1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right) \\
M_{1}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

	\mathbf{E}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$
\mathbf{E}	E	R_{1}	R_{2}	M_{1}	M_{2}	M_{3}
$\mathbf{R}_{\mathbf{1}}$	R_{1}	R_{2}	E	M_{2}	M_{3}	M_{1}
$\mathbf{R}_{\mathbf{2}}$	R_{2}	E	R_{1}	M_{3}	M_{1}	M_{2}
$\mathbf{M}_{\mathbf{1}}$	M_{1}	M_{3}	M_{2}	E	R_{2}	R_{1}
$\mathbf{M}_{\mathbf{2}}$	M_{2}	M_{1}	M_{3}	R_{1}	E	R_{2}
$\mathbf{M}_{\mathbf{3}}$	M_{3}	M_{2}	M_{1}	R_{2}	R_{1}	E

You can check if matrices reproduce the structure of the group

Dimension of the representation: the dimension of the space on which it acts
Generators of the group: the minimal set of operations out of which the entire group can be derived [not unique]

Group Representation

Group of Symmetries of the Equilateral triangle

Thinking of transformations acting on the coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$):

$$
R_{1}=\left(\begin{array}{cc|c}
-1 / 2 & +\sqrt{3} / 2 & 0 \\
-\sqrt{3} / 2 & -1 / 2 & 0 \\
\hline 0 & 0 & 1
\end{array}\right) \quad M_{1}=\left(\begin{array}{cc|c}
-1 & 0 & 0 \\
0 & 1 & 0 \\
\hline 0 & 0 & 1
\end{array}\right)
$$

Note: The z-component never mix with the x - and y-components. This means we can divide the space in $\{x, y\}$ and $\{z\}$ and treat them independently. In this case we say the representation is reducible.

Group Representation

Group of Symmetries of the Equilateral triangle

Thinking of transformations acting on the coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$):

$$
R_{1}=\left(\begin{array}{cc|c}
-1 / 2 & +\sqrt{3} / 2 & 0 \\
-\sqrt{3} / 2 & -1 / 2 & 0 \\
\hline 0 & 0 & 1
\end{array}\right)
$$

Two-dimensional irreducible representation

$$
\begin{gathered}
D_{1}\left(R_{1}\right)=\left(\begin{array}{cc}
-1 / 2 & +\sqrt{3} / 2 \\
-\sqrt{3} / 2 & -1 / 2
\end{array}\right) \\
D_{1}\left(M_{1}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

$$
M_{1}=\left(\begin{array}{cc|c}
-1 & 0 & 0 \\
0 & 1 & 0 \\
\hline 0 & 0 & 1
\end{array}\right)
$$

One-dimensional irreducible representation

$$
\begin{aligned}
& D_{2}\left(R_{1}\right)=1 \\
& D_{2}\left(M_{1}\right)=1
\end{aligned}
$$

[Trivial representation]

Group Representation

Group of Symmetries of the Equilateral triangle

Two-dimensional
irreducible representation

$$
\begin{gathered}
D_{1}\left(R_{1}\right)=\left(\begin{array}{cc}
-1 / 2 & +\sqrt{3} / 2 \\
-\sqrt{3} / 2 & -1 / 2
\end{array}\right) \\
D_{1}\left(M_{1}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

One-dimensional [trivial] irreducible representation

$$
\begin{aligned}
& D_{2}\left(R_{1}\right)=1 \\
& D_{2}\left(M_{1}\right)=1
\end{aligned}
$$

Question: How can we know that we have identified all the representations?

Character

Character: The characters of a group representation D are the traces of the respective linear operators (matrices) $\chi_{D}\left(G_{i}\right)=\operatorname{Tr} D\left(G_{i}\right)$. The trace of a matrix is the sum of its diagonal elements.

Character

Character: The characters of a group representation D are the traces of the respective linear operators (matrices) $\chi_{D}\left(G_{i}\right)=\operatorname{Tr} D\left(G_{i}\right)$. The trace of a matrix is the sum of its diagonal elements.

Conjugate elements have the same character: $G \cdot G_{1} \cdot G^{-1}=G_{2}$

$$
\chi\left(G_{2}\right)=\chi\left(G \cdot G_{1} \cdot G^{-1}\right)=\chi\left(G^{-1} \cdot G \cdot G_{1}\right)=\chi\left(G_{1}\right)
$$

[cyclic property of the trace]

Character

Character: The characters of a group representation D are the traces of the respective linear operators (matrices) $\chi_{D}\left(G_{i}\right)=\operatorname{Tr} D\left(G_{i}\right)$. The trace of a matrix is the sum of its diagonal elements.

Conjugate elements have the same character: $G \cdot G_{1} \cdot G^{-1}=G_{2}$

$$
\chi\left(G_{2}\right)=\chi\left(G \cdot G_{1} \cdot G^{-1}\right)=\chi\left(G^{-1} \cdot G \cdot G_{1}\right)=\chi\left(G_{1}\right)
$$

[cyclic property of the trace]

Character

Character: The characters of a group representation D are the traces of the respective linear operators (matrices) $\chi_{D}\left(G_{i}\right)=\operatorname{Tr} D\left(G_{i}\right)$. The trace of a matrix is the sum of its diagonal elements.

Conjugate elements have the same character: $G \cdot G_{1} \cdot G^{-1}=G_{2}$

$$
\chi\left(G_{2}\right)=\chi\left(G \cdot G_{1} \cdot G^{-1}\right)=\chi\left(G^{-1} \cdot G \cdot G_{1}\right)=\chi\left(G_{1}\right)
$$

[cyclic property of the trace]

Trivial irrep Non-trivial irrep	$C_{1}=\{E\}$	$C_{2}=\left\{R_{1}, R_{2}\right\}$	$C_{3}=\left\{M_{1}, M_{2}\right.$
	1	1	1
	2	-1	0
		$\left(\begin{array}{cc}-1 / 2 & +\sqrt{3} / 2 \\ -\sqrt{3} / 2 & -1 / 2\end{array}\right)$	$D_{2}\left(R_{1}\right)=1$
		$\left(M_{1}\right)=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$	$D_{2}\left(M_{1}\right)=1$

Question: Have identified all the representations?

Character Table and Irreducible Representations

The characters and representations are connected by the following properties:

- The number of irreducible representations, r, is equal to the number of conjugacy classes;
- The order of the group $\mathbf{G},|\mathbf{G}|$, is equal to the sum of the squares of the dimensions of the irreducible representations $d_{i},|\mathbf{G}|=\sum_{i=1}^{r} d_{i}^{2}$;
- The characters are orthonormal: $\sum_{i=1}^{r} n_{i} \chi_{D}^{*}\left(G_{i}\right) \chi_{D^{\prime}}\left(G_{i}\right)=|\mathbf{G}| \delta^{D D^{\prime}}$, where n_{i} is the number of elements in the conjugacy class represented by G_{i}.

Character Table and Irreducible Representations

The characters and representations are connected by the following properties:

- The number of irreducible representations, r, is equal to the number of conjugacy classes; There is one representation missing!
- The order of the group $\mathbf{G},|\mathbf{G}|$, is equal to the sum of the squares of the dimensions of the irreducible representations $d_{i},|\mathbf{G}|=\sum_{i=1}^{r} d_{i}^{2}$;
- The characters are orthonormal: $\sum_{i=1}^{r} n_{i} \chi_{D}^{*}\left(G_{i}\right) \chi_{D^{\prime}}\left(G_{i}\right)=|\mathbf{G}| \delta^{D D^{\prime}}$, where n_{i} is the number of elements in the conjugacy class represented by G_{i}.

Character Table and Irreducible Representations

The characters and representations are connected by the following properties:

- The number of irreducible representations, r, is equal to the number of conjugacy classes; There is one representation missing!
- The order of the group $\mathbf{G},|\mathbf{G}|$, is equal to the sum of the squares of the dimensions of the irreducible representations $d_{i},|\mathbf{G}|=\sum_{i=1}^{r} d_{i}^{2} ; \quad 6=1^{2}+2^{2}+d^{2} \Rightarrow d=1$
- The characters are orthonormal: $\sum_{i=1}^{r} n_{i} \chi_{D}^{*}\left(G_{i}\right) \chi_{D^{\prime}}\left(G_{i}\right)=|\mathbf{G}| \delta^{D D^{\prime}}$, where n_{i} is the number of elements in the conjugacy class represented by G_{i}.

Character Table and Irreducible Representations

The characters and representations are connected by the following properties:

- The number of irreducible representations, r, is equal to the number of conjugacy classes; There is one representation missing!
- The order of the group $\mathbf{G},|\mathbf{G}|$, is equal to the sum of the squares of the dimensions of the irreducible representations $d_{i},|\mathbf{G}|=\sum_{i=1}^{r} d_{i}^{2} ; \quad 6=1^{2}+2^{2}+d^{2} \Rightarrow d=1$
- The characters are orthonormal: $\sum_{i=1}^{r} n_{i} \chi_{D}^{*}\left(G_{i}\right) \chi_{D^{\prime}}\left(G_{i}\right)=|\mathbf{G}| \delta^{D D^{\prime}}$, where n_{i} is the number of elements in the conjugacy class represented by G_{i}.

	$C_{1}=\{E\}$	$C_{2}=\left\{R_{1}, R_{2}\right\}$	$C_{3}=\left\{M_{1}, M_{2}, M_{3}\right\}$
Trivial irrep	1	1	1
Non-trivial irrep	2	-1	0

Character Table and Irreducible Representations

The characters and representations are connected by the following properties:

- The number of irreducible representations, r, is equal to the number of conjugacy classes; There is one representation missing!
- The order of the group $\mathbf{G},|\mathbf{G}|$, is equal to the sum of the squares of the dimensions of the irreducible representations $d_{i},|\mathbf{G}|=\sum_{i=1}^{r} d_{i}^{2} ; \quad 6=1^{2}+2^{2}+d^{2} \Rightarrow d=1$
- The characters are orthonormal: $\sum_{i=1}^{r} n_{i} \chi_{D}^{*}\left(G_{i}\right) \chi_{D^{\prime}}\left(G_{i}\right)=|\mathbf{G}| \delta^{D D^{\prime}}$, where n_{i} is the number of elements in the conjugacy class represented by G_{i}.

	$C_{1}=\{E\}$	$C_{2}=\left\{R_{1}, R_{2}\right\}$	$C_{3}=\left\{M_{1}, M_{2}, M_{3}\right\}$
Trivial irrep	1	1	1
Non-trivial irrep	2	-1	0

1

Character Table and Irreducible Representations

The characters and representations are connected by the following properties:

- The number of irreducible representations, r, is equal to the number of conjugacy classes; There is one representation missing!
- The order of the group $\mathbf{G},|\mathbf{G}|$, is equal to the sum of the squares of the dimensions of the irreducible representations $d_{i},|\mathbf{G}|=\sum_{i=1}^{r} d_{i}^{2} ; \quad 6=1^{2}+2^{2}+d^{2} \Rightarrow d=1$
- The characters are orthonormal: $\sum_{i=1}^{r} n_{i} \chi_{D}^{*}\left(G_{i}\right) \chi_{D^{\prime}}\left(G_{i}\right)=|\mathbf{G}| \delta^{D D^{\prime}}$, where n_{i} is the number of elements in the conjugacy class represented by G_{i}.

Trivial irrep	$C_{1}=\{E\}$	$C_{2}=\left\{R_{1}, R_{2}\right\}$	$C_{3}=\left\{M_{1}, M_{2}, M_{3}\right\}$
	1	1	1
	2	-1	0
	1	A	B

Character Table and Irreducible Representations

The characters and representations are connected by the following properties:

- The number of irreducible representations, r, is equal to the number of conjugacy classes; There is one representation missing!
- The order of the group $\mathbf{G},|\mathbf{G}|$, is equal to the sum of the squares of the dimensions of the irreducible representations $d_{i},|\mathbf{G}|=\sum_{i=1}^{r} d_{i}^{2} ; \quad 6=1^{2}+2^{2}+d^{2} \Rightarrow d=1$
- The characters are orthonormal: $\sum_{i=1}^{r} n_{i} \chi_{D}^{*}\left(G_{i}\right) \chi_{D^{\prime}}\left(G_{i}\right)=|\mathbf{G}| \delta^{D D^{\prime}}$, where n_{i} is the number of elements in the conjugacy class represented by G_{i}.

Trivial irrep Non-trivial irrep	$C_{1}=\{E\}$	$C_{2}=\left\{R_{1}, R_{2}\right\}$	$C_{3}=\left\{M_{1}, M_{2}, M_{3}\right\}$
	1	1	1
	2	-1	0
	1	A	B
	(1).1.1 $+(2) 1 \cdot A+(3) \cdot 1 \cdot B=0$ (1) $\cdot 2 \cdot 1+(2) \cdot(-1) \cdot A+(3) \cdot 0 \cdot B=0$		

Character Table and Irreducible Representations

The characters and representations are connected by the following properties:

- The number of irreducible representations, r, is equal to the number of conjugacy classes; There is one representation missing!
- The order of the group $\mathbf{G},|\mathbf{G}|$, is equal to the sum of the squares of the dimensions of the irreducible representations $d_{i},|\mathbf{G}|=\sum_{i=1}^{r} d_{i}^{2} ; \quad 6=1^{2}+2^{2}+d^{2} \Rightarrow d=1$
- The characters are orthonormal: $\sum_{i=1}^{r} n_{i} \chi_{D}^{*}\left(G_{i}\right) \chi_{D^{\prime}}\left(G_{i}\right)=|\mathbf{G}| \delta^{D D^{\prime}}$, where n_{i} is the number of elements in the conjugacy class represented by G_{i}.

	$C_{1}=\{E\}$	$C_{2}=\left\{R_{1}, R_{2}\right\}$	$C_{3}=\left\{M_{1}, M_{2}, M_{3}\right\}$
Trivial irrep	1	1	1
Non-trivial irrep	2	-1	0
	1	A	B
		(1).1.1 $+(2) 1 \cdot A+(3) \cdot 1 \cdot B=0$ (1) $\cdot 2 \cdot 1+(2) \cdot(-1) \cdot A+(3) \cdot 0 \cdot B=0$	

Character Table and Irreducible Representations

	$C_{1}=\{E\}$	$C_{2}=\left\{R_{1}, R_{2}\right\}$	$C_{3}=\left\{M_{1}, M_{2}, M_{3}\right\}$	
Trivial irrrep	A_{1}	1	1	1
Non-trivial irrep	A_{2}	1	1	-1
Non-trivial irrep	E	2	-1	0

Character Table and Irreducible Representations

		$C_{1}=\{E\}$	$C_{2}=\left\{R_{1}, R_{2}\right\}$	$C_{3}=\left\{M_{1}, M_{2}, M_{3}\right\}$
Trivial irrep	A_{1}	1	1	1
Non-trivial irrep	A_{2}	1	1	-1
Non-trivial irrep	E	2	-1	0

Character Table and Irreducible Representations

Note that these properties can in principle be derived directly from the group structure, without thinking about any geometric realisation of the transformations!

Character Table and Irreducible Representations

		$C_{1}=\{E\}$	$C_{2}=\left\{R_{1}, R_{2}\right\}$	$C_{3}=\left\{M_{1}, M_{2}, M_{3}\right\}$
Trivial irrep	A_{1}	1	1	1
Non-trivial irrep	A_{2}	1	1	-1
Non-trivial irrep	E	2	-1	0

Note that these properties can in principle be derived directly from the group structure, without thinking about any geometric realisation of the transformations!

These are can be found in

- Bradley and Cracknell
- Bilbao crystallographic server
- ...
bilbao crystallographic server

Crystallographic Groups

SC and other ordered phases emerge in...

[R-3m]
$\mathrm{Bi}_{2} \mathrm{Se}_{3}$

...and many others...

From the triangle to the triangular lattice

E, R[60$], R\left[120^{\circ}\right], R\left[180^{\circ}\right], R\left[240^{\circ}\right], R\left[300^{\circ}\right]$

$$
=\mathrm{C}_{6} \quad=\mathrm{C}_{3} \quad=\mathrm{C}_{2} \quad=\mathrm{C}_{3}-1 \quad=\mathrm{C}_{6}-1
$$

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels

From the triangle to the triangular lattice

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels

From the triangle to the triangular lattice

[12 elements in 6 classes]

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels

From the triangle to the triangular lattice

[12 elements in 6 classes]

Symmetries of the square lattice

E, R[90〕, R[180ํ], R[270ํ] $=\mathrm{C}_{4} \quad=\mathrm{C}_{2}$

Symmetries of the square lattice

E, R[90$], ~ R\left[180^{\circ}\right], R\left[270^{\circ}\right]$ $=\mathrm{C}_{4}$
 $=\mathrm{C}_{2}$

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels

Symmetries of the square lattice

$$
\begin{gathered}
\mathrm{E}, \mathrm{R}\left[90^{\circ}\right], \mathrm{R}\left[180^{\circ}\right], \mathrm{R}\left[270^{\circ}\right] \\
=\mathrm{C}_{4} \quad=\mathrm{C}_{2}
\end{gathered}
$$

Symmetries of the square lattice

[8 elements in 5 classes]

Symmetries of the square lattice

[8 elements in 5 classes]

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels \Rightarrow Basis Functions

D_{4} [dihedral] point group

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels \Rightarrow Basis Functions

D_{4} [dihedral] point group

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels \Rightarrow Basis Functions

D_{4} [dihedral] point group

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels \Rightarrow Basis Functions

D_{4} [dihedral] point group

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels \Rightarrow Basis Functions

D_{4} [dihedral] point group

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels \Rightarrow Basis Functions

D_{4} [dihedral] point group

D_{4} [dihedral] point group

Character table and irreducible representations (Irrep)

E	$2 C_{4}(z)$	$C_{2}(z)$	$2 C_{2}(x)$	$2 C_{2}(d)$

D_{4} [dihedral] point group

Character table and irreducible representations (Irrep)

Irrep	E	$2 C_{4}(z)$	$C_{2}(z)$	$2 C_{2}(x)$	$2 C_{2}(d)$
A_{1}	+1	+1	+1	+1	+1
A_{2}	+1	+1	+1	-1	-1
B_{1}	+1	-1	+1	+1	-1
B_{2}	+1	-1	+1	-1	+1
E	+2	0	-2	0	0

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels \Rightarrow Basis Functions

D_{4} [dihedral] point group

Character table and irreducible representations (Irrep)

Irrep	E	$2 C_{4}(z)$	$C_{2}(z)$	$2 C_{2}(x)$	$2 C_{2}(d)$
A_{1}	+1	+1	+1	+1	+1
A_{2}	+1	+1	+1	-1	-1
B_{1}	+1	-1	+1	+1	-1
B_{2}	+1	-1	+1	-1	+1
E	+2	0	-2	0	0

D_{4} [dihedral] point group

Character table and irreducible representations (Irrep)

Irrep	E	$2 C_{4}(z)$	$C_{2}(z)$	$2 C_{2}(x)$	$2 C_{2}(d)$
A_{1}	+1	+1	+1	+1	+1
A_{2}	+1	+1	+1	-1	-1
B_{1}	+1	-1	+1	+1	-1
B_{2}	+1	-1	+1	-1	+1
E	+2	0	-2	0	0

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels \Rightarrow Basis Functions

D_{4} [dihedral] point group

Character table and irreducible representations (Irrep)

Irrep	E	$2 C_{4}(z)$	$C_{2}(z)$	$2 C_{2}(x)$	$2 C_{2}(d)$
$\bigcirc A_{1}$	$\bigcirc+1$	$\square+1$	$\square+1$	$\square+1$	$\square+1$
$\begin{aligned} & +1 \longleftarrow A_{2} \\ & -1 \longleftarrow \end{aligned}$	$\square+1$	$\longrightarrow+1$	$\sum+1$	-1	$\square-1$
B_{1}	$+1$	-1	$+1$	> +1	$\bigcirc-1$
B_{2}	+1	-1	+1	-1	+1
E	+2	0	-2	0	0

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels \Rightarrow Basis Functions

D_{4} [dihedral] point group

Character table and irreducible representations (Irrep)

Irrep	E	$2 C_{4}(z)$	$C_{2}(z)$	$2 C_{2}(x)$	$2 C_{2}(d)$
A_{1}	$\bigcirc+1$	$\square+1$	$\square+1$	$\square+1$	$\square+1$
$\begin{aligned} & +1 \longleftarrow \\ & +1 \longleftarrow \end{aligned}$	$\square+1$	$\cdots+1$	$\longrightarrow+1$	-1	-1
B_{1}	$+1$	-1	$\square+1$	P+1	-1
$\cdots B_{2}$	$\square+1$	(-1	$\square+1$	(-1	$\square+1$
E	+2	0	-2	0	0

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels \Rightarrow Basis Functions

D_{4} [dihedral] point group

Character table and irreducible representations (Irrep)

Irrep	E	$2 C_{4}(z)$	$C_{2}(z)$	$2 C_{2}(x)$	$2 C_{2}(d)$
	A_{1}		+1		+1

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels \Rightarrow Basis Functions

D_{4} [dihedral] point group

Character table and irreducible representations (Irrep)

Basis functions

Crystallographic Point Groups

[There are 32 crystallographic point groups in 3D]

Crystal family	Crystal system	Hermann-Mauguin		Shubnikov ${ }^{[1]}$	Schoenflies	Orbifold	Coxeter	Order
		(full)	(short)					
Triclinic		1	1	1	c_{1}	11	l^{+}	1
		$\overline{1}$	$\overline{1}$	2	$C_{i}=S_{2}$	\times	$\left[2^{+}, 2^{+}\right]$	2
Monoclinic		2	2	2	C_{2}	22	$[2]^{+}$	2
		m	m	m	$C_{s}=c_{\text {1n }}$	*	[]	2
		$\frac{2}{m}$	$2 / \mathrm{m}$	2:m	$\mathrm{C}_{2 h}$	2^{*}	[2,2+]	4
Orthorhombic		222	222	2:2	$D_{2}=V$	222	$[2,2]^{+}$	4
		mm2	mm2	$2 \cdot m$	$C_{2 v}$	*22	[2]	4
		$\frac{2}{m} \frac{2}{m} \frac{2}{m}$	mmm	$m \cdot 2$: m	$D_{2 h}=v_{h}$	*222	[2,2]	8
Tetragonal		4	4	4	C_{4}	44	$[4]^{+}$	4
		$\overline{4}$	$\overline{4}$	$\overline{4}$	S_{4}	2x	$\left[2^{+}, 4^{+}\right]$	4
		$\frac{4}{m}$	4/m	4:m	$C_{4 h}$	4*	$\left[2,4^{+}\right]$	8
		422	422	4:2	D_{4}	422	$[4,2]^{+}$	8
		4 mm	4 mm	$4 \cdot m$	$C_{4 v}$	*44	[4]	8
		$\overline{4} 2 \mathrm{~m}$	$\overline{4} 2 \mathrm{~m}$	$\tilde{4} \cdot m$	$D_{2 d}=V_{d}$	$2{ }^{*} 2$	$\left[2^{+}, 4\right]$	8
		$\frac{4}{m} \frac{2}{m} \frac{2}{m}$	4/mmm	$m \cdot 4$: m	$D_{4 n}$	*422	[4,2]	16
Hexagonal	Trigonal	3	3	3	C_{3}	33	$[3]^{+}$	3
		$\overline{3}$	$\overline{3}$	\%	$C_{3 i}=S_{6}$	$3 \times$	[${ }^{+}$, $\left.6^{+}\right]$	6
		32	32	3:2	D_{3}	322	$[3,2]^{+}$	6
		3 m	3 m	3•m	$C_{3 v}$	*33	[3]	6
		$\overline{3} \frac{2}{m}$	$\overline{3} \mathrm{~m}$	$\tilde{6} \cdot m$	$D_{3 d}$	2*3	$\left[2^{+}, 6\right]$	12
	Hexagonal	6	6	6	C_{6}	66	$[6]^{+}$	6
		$\overline{6}$	$\overline{6}$	3:m	$c_{3 h}$	3^{*}	[2,3+]	6
		$\frac{6}{m}$	6/m	6:m	$C_{6 h}$	6^{*}	$\left[2,6^{+}\right]$	12
		622	622	6:2	D_{6}	622	$[6,2]^{+}$	12
		6 mm	6 mm	6.m	$C_{6 v}$	*66	[6]	12
		$\overline{6} \mathrm{~m} 2$	$\overline{6} \mathrm{~m} 2$	$m \cdot 3: m$	$D_{3 n}$	*322	[3,2]	12
		$\frac{6}{m} \frac{2}{m} \frac{2}{m}$	6/mmm	$m \cdot 6: m$	$D_{6 n}$	*622	[6,2]	24
Cubic		23	23	3/2	T	332	$[3,3]^{+}$	12
		$\frac{2}{m} \overline{3}$	$\mathrm{m} \overline{3}$	$\tilde{6} / 2$	T_{h}	$3^{*} 2$	$\left[3^{+}, 4\right]$	24
		432	432	3/4	0	432	$[4,3]^{+}$	24
		${ }^{4} 3 \mathrm{~m}$	$\overline{4} 3 \mathrm{~m}$	$3 / \overline{4}$	T_{d}	*332	[3,3]	24
		$\frac{4}{m} \overline{3} \frac{2}{m}$	m3̄m	б/4	O_{h}	*432	[4,3]	48

C_{n} : n -fold rotation
C_{nh} : $\mathrm{C}_{\mathrm{n}}+\perp$ mirror
$\mathrm{C}_{\mathrm{nv}}: \mathrm{C}_{\mathrm{n}}+\mathrm{n} \|$ mirrors
S_{n} : n -fold rotation-reflection
D_{n} : n-fold rotations +n 2 -fold \perp rotations
$D_{n h}: D_{n}+\perp$ mirror
$\mathrm{Dn}_{\mathrm{nd}}: \mathrm{D}_{\mathrm{n}}+\mathrm{n}| |$ mirror
T : Tetrahedron
[h: with inversion, d: with improper rotations]
O : Octahedron [h: with inversion]

Character Tables for Point Groups used in Chemistry

 $\boldsymbol{C}_{\boldsymbol{n h}} \mathrm{C}_{\mathrm{s}} \mathrm{C}_{2 \mathrm{~h}} \mathrm{C}_{3 \mathrm{~h}} \mathrm{C}_{4 \mathrm{~h}} \mathrm{C}_{5 \mathrm{~h}} \mathrm{C}_{6 \mathrm{~h}} \mathrm{C}_{7 \mathrm{~h}} \mathrm{C}_{8 \mathrm{~h}} \mathrm{C}_{9 \mathrm{~h}} \mathrm{C}_{10 \mathrm{~h}} \mathrm{C}_{11 \mathrm{~h}} \mathrm{C}_{12 \mathrm{~h}} \mathrm{C}_{13 \mathrm{~h}} \mathrm{C}_{14 \mathrm{~h}} \mathrm{C}_{15 \mathrm{~h}} \mathrm{C}_{16 \mathrm{~h}} \mathrm{C}_{17 \mathrm{~h}} \mathrm{C}_{18 \mathrm{~h}} \mathrm{C}_{19 \mathrm{~h}} \mathrm{C}_{20 \mathrm{~h}} \mathrm{C}_{21 \mathrm{~h}} \mathrm{C}_{22 h} \mathrm{C}_{23 \mathrm{~h}} \mathrm{C}_{24 \mathrm{~h}} \mathrm{C}_{25 \mathrm{~h}} \mathrm{C}_{26 \mathrm{~h}} \mathrm{C}_{27 \mathrm{~h}} \mathrm{C}_{28 \mathrm{~h}} \mathrm{C}_{29 \mathrm{~h}} \mathrm{C}_{30 h} \mathrm{C}_{31 \mathrm{~h}} \mathrm{C}_{32 \mathrm{~h}}$ $\mathbf{D}_{\boldsymbol{n}} \quad \mathrm{D}_{2} \mathrm{D}_{3} \mathrm{D}_{4}$ $\mathbf{D}_{\boldsymbol{n h}} \quad \mathrm{D}_{2 h} \mathrm{D}_{3 h} \mathrm{D}_{4 h} \mathrm{D}_{5 h} \mathrm{D}_{6 h} \mathrm{D}_{7 h} \mathrm{D}_{8 h} \mathrm{D}_{9 h} \mathrm{D}_{10 h} \mathrm{D}_{11 h} \mathrm{D}_{12 h} \mathrm{D}_{13 h} \mathrm{D}_{14 h} \mathrm{D}_{15 h} \mathrm{D}_{16 h} \mathrm{D}_{17 h} \mathrm{D}_{18 h} \mathrm{D}_{19 h} \mathrm{D}_{20 h} \mathrm{D}_{21 h} \mathrm{D}_{22 h} \mathrm{D}_{23 h} \mathrm{D}_{24 h} \mathrm{D}_{25 h} \mathrm{D}_{26 h} \mathrm{D}_{27 h} \mathrm{D}_{28 h} \mathrm{D}_{29 h} \mathrm{D}_{30 h} \mathrm{D}_{31 h} \mathrm{D}_{32 h}$ $\mathbf{D}_{n d} \quad D_{2 d} D_{3 d} D_{4 d} D_{5 d} D_{6 d} D_{7 d} D_{8 d} D_{9 d} D_{10 d} D_{11 d} D_{12 d} D_{13 d} D_{14 d} D_{15 d} D_{16 d} D_{17 d} D_{18 d} D_{19 d} D_{20 d} D_{21 d} D_{22 d} D_{23 d} D_{24 d} D_{25 d} D_{26 d} D_{27 d} D_{28 d} D_{29 d} D_{30 d} D_{31 d} D_{32 d}$ $\begin{array}{lllllllllllll}\mathbf{S}_{n} & \mathrm{C}_{\mathrm{i}} & \mathrm{S}_{4} & \mathrm{~S}_{6} & \mathrm{~S}_{8} & \mathrm{~S}_{10} & \mathrm{~S}_{12} & \mathrm{~S}_{14} & \mathrm{~S}_{16} & \mathrm{~S}_{18} & \mathrm{~S}_{20} & \mathrm{~S}_{22} & \mathrm{~S}_{24}\end{array}$ isometric $\quad \mathrm{T} \quad \mathrm{T}_{\mathrm{d}} \quad \mathrm{T}_{\mathrm{h}}$

$\mathbf{C}_{\mathbf{3 v}}$	\mathbf{E}	$\mathbf{2} \mathbf{C}_{\mathbf{3}}$	$\mathbf{3 ~}_{\mathbf{v}}$
$\mathbf{A}_{\mathbf{1}}$	1	1	1
$\mathbf{A}_{\mathbf{2}}$	1	1	-1
\mathbf{E}	2	-1	0

Symmetry of Rotations and Cartesian products

Character Tables for Point Groups used in Chemistry

 $\mathbf{D}_{\boldsymbol{n}} \quad \mathrm{D}_{2} \quad \mathrm{D}_{3} \mathrm{D}_{4} \mathrm{D}_{5} \mathrm{D}_{6} \mathrm{D}_{7} \mathrm{D}_{8}$ $D_{n h} \quad D_{2 h} D_{3 h} D_{4 h} D_{5 h} D_{6 h} D_{7 h} D_{8 h} D_{9 h} D_{10 h} D_{11 h} D_{12 h} D_{13 h} D_{14 h} D_{15 h} D_{16 h} D_{17 h} D_{18 h} D_{19 h} D_{20 h} D_{21 h} D_{22 h} D_{23 h} D_{24 h} D_{25 h} D_{26 h} D_{27 h} D_{28 h} D_{29 h} D_{30 h} D_{31 h} D_{32 h}$ $D_{n d} \quad D_{2 d} D_{3 d} D_{4 d} D_{5 d} D_{6 d} D_{7 d} D_{8 d} D_{9 d} D_{10 d} D_{11 d} D_{12 d} D_{13 d} D_{14 d} D_{15 d} D_{16 d} D_{17 d} D_{18 d} D_{19 d} D_{20 d} D_{21 d} D_{22 d} D_{23 d} D_{24 d} D_{25 d} D_{26 d} D_{27 d} D_{28 d} D_{29 d} D_{30 d} D_{31 d} D_{32 d}$ $\begin{array}{lllllllllllll}\mathbf{S}_{n} & \mathrm{C}_{\mathrm{i}} & \mathrm{S}_{4} & \mathrm{~S}_{6} & \mathrm{~S}_{8} & \mathrm{~S}_{10} & \mathrm{~S}_{12} & \mathrm{~S}_{14} & \mathrm{~S}_{16} & \mathrm{~S}_{18} & \mathrm{~S}_{20} & \mathrm{~S}_{22} & \mathrm{~S}_{24}\end{array}$ isometric $\mathrm{T} \quad \mathrm{T}_{\mathrm{d}} \quad \mathrm{T}_{\mathrm{h}} \quad \mathrm{O} \quad \mathrm{O}_{\mathrm{h}} \quad \mathrm{I} \quad \mathrm{I}_{\mathrm{h}} \quad$ Schoenflies symbol:

$\mathbf{C}_{\mathbf{3 v}}$	\mathbf{E}	$\mathbf{2} \mathbf{C}_{\mathbf{3}}$	$\mathbf{3 ~ \sigma}_{\mathbf{v}}$
$\mathbf{A}_{\mathbf{1}}$	1	1	1
$\mathbf{A}_{\mathbf{2}}$	1	1	-1
\mathbf{E}	2	-1	0

Note: For crystallographic point groups only (32) groups with rotation axes of order $n=1,2,3,4,6$ are allowed!

Symmetry of Rotations and Cartesian products

Mercado Central de Valencia

$\begin{array}{llllllllllllllllll}\mathbf{C}_{\boldsymbol{n}} & \mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{C}_{3} & \mathrm{C}_{4} & \mathrm{C}_{5} & \mathrm{C}_{6} & \mathrm{C}_{7} & \mathrm{C}_{8} & \mathrm{C}_{9} & \mathrm{C}_{10} & \mathrm{C}_{11} & \mathrm{C}_{12} & \mathrm{C}_{13} & \mathrm{C}_{14} & \mathrm{C}_{15} & \mathrm{C}_{16} & \mathrm{C}_{17}\end{array} \mathrm{C}_{18} \mathrm{C}_{19} \mathrm{C}_{20}$
$\mathbf{C}_{n v} \quad C_{2 v} C_{3 v} C_{4 v} C_{5 v} C_{6 v} C_{7 v} C_{8 v} C_{9 v} C_{10 v} C_{11 v} C_{12 v} C_{13 v} C_{14 v} C_{15 v} C_{16 v} C_{17 v} C_{18 v} C_{19 v} C_{20 v}$
$\mathbf{C}_{\boldsymbol{n h}} \mathrm{C}_{\mathrm{s}} \mathrm{C}_{2 h} \mathrm{C}_{3 \mathrm{~h}} \mathrm{C}_{4 \mathrm{~h}} \mathrm{C}_{5 h} \mathrm{C}_{6 \mathrm{~h}} \mathrm{C}_{7 \mathrm{~h}} \mathrm{C}_{8 \mathrm{~h}} \mathrm{C}_{9 \mathrm{~h}} \mathrm{C}_{10 h} \mathrm{C}_{11 \mathrm{~h}} \mathrm{C}_{12 \mathrm{~h}} \mathrm{C}_{13 \mathrm{~h}} \mathrm{C}_{14 \mathrm{~h}} \mathrm{C}_{15 \mathrm{~h}} \mathrm{C}_{16 \mathrm{~h}} \mathrm{C}_{17 \mathrm{~h}} \mathrm{C}_{18 \mathrm{~h}} \mathrm{C}_{19 \mathrm{~h}} \mathrm{C}_{20 h}$
$\begin{array}{llllllllllllllllllll}\mathbf{D}_{\boldsymbol{n}} & \mathrm{D}_{2} & \mathrm{D}_{3} & \mathrm{D}_{4} & \mathrm{D}_{5} & \mathrm{D}_{6} & \mathrm{D}_{7} & \mathrm{D}_{8} & \mathrm{D}_{9} & \mathrm{D}_{10} & \mathrm{D}_{11} & \mathrm{D}_{12} & \mathrm{D}_{13} & \mathrm{D}_{14} & \mathrm{D}_{15} & \mathrm{D}_{16} & \mathrm{D}_{17} & \mathrm{D}_{18} & \mathrm{D}_{19} & \mathrm{D}_{20}\end{array}$
$\mathrm{D}_{\boldsymbol{n h}} \quad \mathrm{D}_{2 \mathrm{~h}} \mathrm{D}_{3 \mathrm{~h}} \mathrm{D}_{4 \mathrm{~h}} \mathrm{D}_{5 \mathrm{~h}} \mathrm{D}_{6 \mathrm{~h}} \mathrm{D}_{7 \mathrm{~h}} \mathrm{D}_{8 \mathrm{~h}} \mathrm{D}_{9 \mathrm{~h}} \mathrm{D}_{10 \mathrm{~h}} \mathrm{D}_{11 \mathrm{~h}} \mathrm{D}_{12 \mathrm{~h}} \mathrm{D}_{13 \mathrm{~h}} \mathrm{D}_{14 \mathrm{~h}} \mathrm{D}_{15 \mathrm{~h}} \mathrm{D}_{16 \mathrm{~h}} \mathrm{D}_{17 \mathrm{~h}} \mathrm{D}_{18 \mathrm{~h}} \mathrm{D}_{19 \mathrm{~h}} \mathrm{D}_{20 \mathrm{~h}}$ $D_{n d} \quad D_{2 d} D_{3 d} D_{4 d} D_{5 d} D_{6 d} D_{7 d} D_{8 d} D_{9 d} D_{10 d} D_{11 d} D_{12 d} D_{13 d} D_{14 d} D_{15 d} D_{16 d} D_{17 d} D_{18 d} D_{19 d} D_{20 d}$

$\mathbf{S}_{\boldsymbol{n}}$	C_{i}	S_{4}	$\mathrm{~S}_{6}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{10}$	$\mathrm{~S}_{12}$	$\mathrm{~S}_{14}$	$\mathrm{~S}_{16}$	$\mathrm{~S}_{18}$	$\mathrm{~S}_{20}$

isometric
$\mathrm{T}_{\mathrm{d}} \mathrm{T}_{\mathrm{h}}$
O_{h} \qquad Schoenflies symbol: \qquad

Mercado Central de Valencia

$\begin{array}{llllllllllllllllll}\mathbf{C}_{\boldsymbol{n}} & \mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{C}_{3} & \mathrm{C}_{4} & \mathrm{C}_{5} & \mathrm{C}_{6} & \mathrm{C}_{7} & \mathrm{C}_{8} & \mathrm{C}_{9} & \mathrm{C}_{10} & \mathrm{C}_{11} & \mathrm{C}_{12} & \mathrm{C}_{13} & \mathrm{C}_{14} & \mathrm{C}_{15} & \mathrm{C}_{16} & \mathrm{C}_{17}\end{array} \mathrm{C}_{18} \mathrm{C}_{19} \mathrm{C}_{20}$
$\mathbf{C}_{n v} \quad C_{2 v} C_{3 v} C_{4 v} C_{5 v} C_{6 v} C_{7 v} C_{8 v} C_{9 v} C_{10 v} C_{11 v} C_{12 v} C_{13 v} C_{14 v} C_{15 v} C_{16 v} C_{17 v} C_{18 v} C_{19 v} C_{20 v}$
$\mathbf{C}_{\boldsymbol{n} h} \mathrm{C}_{\mathrm{s}} \mathrm{C}_{2 \mathrm{~h}} \mathrm{C}_{3 \mathrm{~h}} \mathrm{C}_{4 \mathrm{~h}} \mathrm{C}_{5 \mathrm{~h}} \mathrm{C}_{6 \mathrm{~h}} \mathrm{C}_{7 \mathrm{~h}} \mathrm{C}_{8 \mathrm{~h}} \mathrm{C}_{9 \mathrm{~h}} \mathrm{C}_{10 \mathrm{~h}} \mathrm{C}_{11 \mathrm{~h}} \mathrm{C}_{12 \mathrm{~h}} \mathrm{C}_{13 \mathrm{~h}} \mathrm{C}_{14 \mathrm{~h}} \mathrm{C}_{15 \mathrm{~h}} \mathrm{C}_{16 \mathrm{~h}} \mathrm{C}_{17 \mathrm{~h}} \mathrm{C}_{18 \mathrm{~h}} \mathrm{C}_{19 \mathrm{~h}} \mathrm{C}_{20 \mathrm{~h}}{ }^{\prime}$
$\mathbf{D}_{\boldsymbol{n}} \quad \mathrm{D}_{2} \quad \mathrm{D}_{3} \mathrm{D}_{4} \mathrm{D}_{5} \mathrm{D}_{6} \mathrm{D}_{7} \mathrm{D}_{8} \mathrm{D}_{9} \mathrm{D}_{10} \mathrm{D}_{11} \mathrm{D}_{12} \mathrm{D}_{13} \mathrm{D}_{14} \mathrm{D}_{15} \mathrm{D}_{16} \mathrm{D}_{17} \mathrm{D}_{18} \mathrm{D}_{19} \mathrm{D}_{20} 1$
$\mathrm{D}_{\boldsymbol{n h}} \quad \mathrm{D}_{2 \mathrm{~h}} \mathrm{D}_{3 \mathrm{~h}} \mathrm{D}_{4 \mathrm{~h}} \mathrm{D}_{5 \mathrm{~h}} \mathrm{D}_{6 \mathrm{~h}} \mathrm{D}_{7 \mathrm{~h}} \mathrm{D}_{8 \mathrm{~h}} \mathrm{D}_{9 \mathrm{~h}} \mathrm{D}_{10 \mathrm{~h}} \mathrm{D}_{11 \mathrm{~h}} \mathrm{D}_{12 \mathrm{~h}} \mathrm{D}_{13 \mathrm{~h}} \mathrm{D}_{14 \mathrm{~h}} \mathrm{D}_{15 \mathrm{~h}} \mathrm{D}_{16 \mathrm{~h}} \mathrm{D}_{17 \mathrm{~h}} \mathrm{D}_{18 \mathrm{~h}} \mathrm{D}_{19 \mathrm{~h}} \mathrm{D}_{20 \mathrm{~h}}$
$D_{n d} \quad D_{2 d} D_{3 d} D_{4 d} D_{5 d} D_{6 d} D_{7 d} D_{8 d} D_{9 d} D_{10 d} D_{11 d} D_{12 d} D_{13 d} D_{14 d} D_{15 d} D_{16 d} D_{17 d} D_{18 d} D_{19 d} D_{20 d}$

$\mathbf{S}_{\boldsymbol{n}}$	C_{i}	S_{4}	$\mathrm{~S}_{6}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{10}$	$\mathrm{~S}_{12}$	$\mathrm{~S}_{14}$	$\mathrm{~S}_{16}$	$\mathrm{~S}_{18}$	$\mathrm{~S}_{20}$

isometric
$\mathrm{T}_{\mathrm{d}} \mathrm{T}_{\mathrm{h}}$
O_{h} \qquad Schoenflies symbol \qquad

Mercado Central de Valencia

$\begin{array}{llllllllllllllllll}\mathbf{C}_{\boldsymbol{n}} & \mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{C}_{3} & \mathrm{C}_{4} & \mathrm{C}_{5} & \mathrm{C}_{6} & \mathrm{C}_{7} & \mathrm{C}_{8} & \mathrm{C}_{9} & \mathrm{C}_{10} & \mathrm{C}_{11} & \mathrm{C}_{12} & \mathrm{C}_{13} & \mathrm{C}_{14} & \mathrm{C}_{15} & \mathrm{C}_{16} & \mathrm{C}_{17} \\ \mathrm{C}_{18} & \mathrm{C}_{19} & \mathrm{C}_{20}\end{array}$ $\mathbf{C}_{n v} \quad C_{2 v} C_{3 v} C_{4 v} C_{5 v} C_{6 v} C_{7 v} C_{8 v} C_{9 v} C_{10 v} C_{11 v} C_{12 v} C_{13 v} C_{14 v} C_{15 v} C_{16 v} C_{17 v} C_{18 v} C_{19 v} C_{20 v}$ $\mathbf{C}_{\boldsymbol{n} h} \mathrm{C}_{\mathrm{s}} \mathrm{C}_{2 \mathrm{~h}} \mathrm{C}_{3 \mathrm{~h}} \mathrm{C}_{4 \mathrm{~h}} \mathrm{C}_{5 \mathrm{~h}} \mathrm{C}_{6 \mathrm{~h}} \mathrm{C}_{7 \mathrm{~h}} \mathrm{C}_{8 \mathrm{~h}} \mathrm{C}_{9 \mathrm{~h}} \mathrm{C}_{10 \mathrm{~h}} \mathrm{C}_{11 \mathrm{~h}} \mathrm{C}_{12 \mathrm{~h}} \mathrm{C}_{13 \mathrm{~h}} \mathrm{C}_{14 \mathrm{~h}} \mathrm{C}_{15 \mathrm{~h}} \mathrm{C}_{16 \mathrm{~h}} \mathrm{C}_{17 \mathrm{~h}} \mathrm{C}_{18 \mathrm{~h}} \mathrm{C}_{19 \mathrm{~h}} \mathrm{C}_{20 \mathrm{~h}}{ }^{\prime}$

$\mathrm{D}_{\boldsymbol{n h}} \quad \mathrm{D}_{2 \mathrm{~h}} \mathrm{D}_{3 \mathrm{~h}} \mathrm{D}_{4 \mathrm{~h}} \mathrm{D}_{5 \mathrm{~h}} \mathrm{D}_{6 \mathrm{~h}} \mathrm{D}_{7 \mathrm{~h}} \mathrm{D}_{8 \mathrm{~h}} \mathrm{D}_{9 \mathrm{~h}} \mathrm{D}_{10 \mathrm{~h}} \mathrm{D}_{11 \mathrm{~h}} \mathrm{D}_{12 \mathrm{~h}} \mathrm{D}_{13 \mathrm{~h}} \mathrm{D}_{14 \mathrm{~h}} \mathrm{D}_{15 \mathrm{~h}} \mathrm{D}_{16 \mathrm{~h}} \mathrm{D}_{17 \mathrm{~h}} \mathrm{D}_{18 \mathrm{~h}} \mathrm{D}_{19 \mathrm{~h}} \mathrm{D}_{20 \mathrm{~h}}$ $D_{n d} \quad D_{2 d} D_{3 d} D_{4 d} D_{5 d} D_{6 d} D_{7 d} D_{8 d} D_{9 d} D_{10 d} D_{11 d} D_{12 d} D_{13 d} D_{14 d} D_{15 d} D_{16 d} D_{17 d} D_{18 d} D_{19 d} D_{20 d}$

$\mathbf{S}_{\boldsymbol{n}}$	C_{i}	S_{4}	$\mathrm{~S}_{6}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{10}$	$\mathrm{~S}_{12}$	$\mathrm{~S}_{14}$	$\mathrm{~S}_{16}$	$\mathrm{~S}_{18}$	$\mathrm{~S}_{20}$

isometric
$\mathrm{T}_{\mathrm{d}} \mathrm{T}_{\mathrm{h}}$
O_{h}
Schoenflies symbol: \qquad

Mercado Central de Valencia

$\begin{array}{llllllllllllllllll}\mathbf{C}_{\boldsymbol{n}} & \mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{C}_{3} & \mathrm{C}_{4} & \mathrm{C}_{5} & \mathrm{C}_{6} & \mathrm{C}_{7} & \mathrm{C}_{8} & \mathrm{C}_{9} & \mathrm{C}_{10} & \mathrm{C}_{11} & \mathrm{C}_{12} & \mathrm{C}_{13} & \mathrm{C}_{14} & \mathrm{C}_{15} & \mathrm{C}_{16} & \mathrm{C}_{17} \\ \mathrm{C}_{18} & \mathrm{C}_{19} & \mathrm{C}_{20}\end{array}$ $\mathbf{C}_{n v} \quad C_{2 v} C_{3 v} C_{4 v} C_{5 v} C_{6 v} C_{7 v} C_{8 v} C_{9 v} C_{10 v} C_{11 v} C_{12 v} C_{13 v} C_{14 v} C_{15 v} C_{16 v} C_{17 v} C_{18 v} C_{19 v} C_{20 v}{ }^{\prime}$ $\mathbf{C}_{\boldsymbol{n} h} \mathrm{C}_{\mathrm{s}} \mathrm{C}_{2 \mathrm{~h}} \mathrm{C}_{3 \mathrm{~h}} \mathrm{C}_{4 \mathrm{~h}} \mathrm{C}_{5 \mathrm{~h}} \mathrm{C}_{6 \mathrm{~h}} \mathrm{C}_{7 \mathrm{~h}} \mathrm{C}_{8 \mathrm{~h}} \mathrm{C}_{9 \mathrm{~h}} \mathrm{C}_{10 \mathrm{~h}} \mathrm{C}_{11 \mathrm{~h}} \mathrm{C}_{12 \mathrm{~h}} \mathrm{C}_{13 \mathrm{~h}} \mathrm{C}_{14 \mathrm{~h}} \mathrm{C}_{15 \mathrm{~h}} \mathrm{C}_{16 \mathrm{~h}} \mathrm{C}_{17 \mathrm{~h}} \mathrm{C}_{18 \mathrm{~h}} \mathrm{C}_{19 \mathrm{~h}} \mathrm{C}_{20 \mathrm{~h}}{ }^{\prime}$ $\left.\begin{array}{llllllllllllllllllll}\mathbf{D}_{\boldsymbol{n}} & \mathrm{D}_{2} & \mathrm{D}_{3} & \mathrm{D}_{4} & \mathrm{D}_{5} & \mathrm{D}_{6} & \mathrm{D}_{7} & \mathrm{D}_{8} & \mathrm{D}_{9} & \mathrm{D}_{10} & \mathrm{D}_{11} & \mathrm{D}_{12} & \mathrm{D}_{13} & \mathrm{D}_{14} & \mathrm{D}_{15} & \mathrm{D}_{16} & \mathrm{D}_{17} & \mathrm{D}_{18} & \mathrm{D}_{19} & \mathrm{D}_{20}\end{array}\right]$
$\mathrm{D}_{\boldsymbol{n h}} \quad \mathrm{D}_{2 \mathrm{~h}} \mathrm{D}_{3 \mathrm{~h}} \mathrm{D}_{4 \mathrm{~h}} \mathrm{D}_{5 \mathrm{~h}} \mathrm{D}_{6 \mathrm{~h}} \mathrm{D}_{7 \mathrm{~h}} \mathrm{D}_{8 \mathrm{~h}} \mathrm{D}_{9 \mathrm{~h}} \mathrm{D}_{10 \mathrm{~h}} \mathrm{D}_{11 \mathrm{~h}} \mathrm{D}_{12 \mathrm{~h}} \mathrm{D}_{13 \mathrm{~h}} \mathrm{D}_{14 \mathrm{~h}} \mathrm{D}_{15 \mathrm{~h}} \mathrm{D}_{16 \mathrm{~h}} \mathrm{D}_{17 \mathrm{~h}} \mathrm{D}_{18 \mathrm{~h}} \mathrm{D}_{19 \mathrm{~h}} \mathrm{D}_{20 \mathrm{~h}} \mathrm{l}$ $D_{n d} \quad D_{2 d} D_{3 d} D_{4 d} D_{5 d} D_{6 d} D_{7 d} D_{8 d} D_{9 d} D_{10 d} D_{11 d} D_{12 d} D_{13 d} D_{14 d} D_{15 d} D_{16 d} D_{17 d} D_{18 d} D_{19 d} D_{20 d}$

$\mathbf{S}_{\boldsymbol{n}}$	C_{i}	S_{4}	$\mathrm{~S}_{6}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{10}$	$\mathrm{~S}_{12}$	$\mathrm{~S}_{14}$	$\mathrm{~S}_{16}$	$\mathrm{~S}_{18}$	$\mathrm{~S}_{20}$

isometric
$\mathrm{T}_{\mathrm{d}} \mathrm{T}_{\mathrm{h}}$ O_{h}

Schoenflies symbol: \qquad

Mercado Central de Valencia

Sun

$\begin{array}{llllllllllllllllll}\mathbf{C}_{\boldsymbol{n}} & \mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{C}_{3} & \mathrm{C}_{4} & \mathrm{C}_{5} & \mathrm{C}_{6} & \mathrm{C}_{7} & \mathrm{C}_{8} & \mathrm{C}_{9} & \mathrm{C}_{10} & \mathrm{C}_{11} & \mathrm{C}_{12} & \mathrm{C}_{13} & \mathrm{C}_{14} & \mathrm{C}_{15} & \mathrm{C}_{16} & \mathrm{C}_{17} \\ \mathrm{C}_{18} & \mathrm{C}_{19} & \mathrm{C}_{20}\end{array}$ $\mathbf{C}_{n v} \quad C_{2 v} C_{3 v} C_{4 v} C_{5 v} C_{6 v} C_{7 v} C_{8 v} C_{9 v} C_{10 v} C_{11 v} C_{12 v} C_{13 v} C_{14 v} C_{15 v} C_{16 v} C_{17 v} C_{18 v} C_{19 v} C_{20 v}$ $\mathbf{C}_{\boldsymbol{n h}} \mathrm{C}_{\mathrm{s}} \mathrm{C}_{2 h} \mathrm{C}_{3 \mathrm{~h}} \mathrm{C}_{4 \mathrm{~h}} \mathrm{C}_{5 h} \mathrm{C}_{6 \mathrm{~h}} \mathrm{C}_{7 \mathrm{~h}} \mathrm{C}_{8 \mathrm{~h}} \mathrm{C}_{9 \mathrm{~h}} \mathrm{C}_{10 h} \mathrm{C}_{11 \mathrm{~h}} \mathrm{C}_{12 \mathrm{~h}} \mathrm{C}_{13 \mathrm{~h}} \mathrm{C}_{14 \mathrm{~h}} \mathrm{C}_{15 \mathrm{~h}} \mathrm{C}_{16 \mathrm{~h}} \mathrm{C}_{17 \mathrm{~h}} \mathrm{C}_{18 \mathrm{~h}} \mathrm{C}_{19 \mathrm{~h}} \mathrm{C}_{20 h}$

$\mathrm{D}_{\boldsymbol{n h}} \quad \mathrm{D}_{2 \mathrm{~h}} \mathrm{D}_{3 \mathrm{~h}} \mathrm{D}_{4 \mathrm{~h}} \mathrm{D}_{5 \mathrm{~h}} \mathrm{D}_{6 \mathrm{~h}} \mathrm{D}_{7 \mathrm{~h}} \mathrm{D}_{8 \mathrm{~h}} \mathrm{D}_{9 \mathrm{~h}} \mathrm{D}_{10 \mathrm{~h}} \mathrm{D}_{11 \mathrm{~h}} \mathrm{D}_{12 \mathrm{~h}} \mathrm{D}_{13 \mathrm{~h}} \mathrm{D}_{14 \mathrm{~h}} \mathrm{D}_{15 \mathrm{~h}} \mathrm{D}_{16 \mathrm{~h}} \mathrm{D}_{17 \mathrm{~h}} \mathrm{D}_{18 \mathrm{~h}} \mathrm{D}_{19 \mathrm{~h}} \mathrm{D}_{20 \mathrm{~h}}$ $D_{n d} \quad D_{2 d} D_{3 d} D_{4 d} D_{5 d} D_{6 d} D_{7 d} D_{8 d} D_{9 d} D_{10 d} D_{11 d} D_{12 d} D_{13 d} D_{14 d} D_{15 d} D_{16 d} D_{17 d} D_{18 d} D_{19 d} D_{20 d}$

$\mathbf{S}_{\boldsymbol{n}}$	C_{i}	S_{4}	$\mathrm{~S}_{6}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{10}$	$\mathrm{~S}_{12}$	$\mathrm{~S}_{14}$	$\mathrm{~S}_{16}$	$\mathrm{~S}_{18}$	$\mathrm{~S}_{20}$

isometric
$\mathrm{T}_{\mathrm{d}} \mathrm{T}_{\mathrm{t}}$ O_{h}

Schoenflies symbol: \qquad

What does this all have to do with SC order parameters?

Review of basic symmetries of the order parameter

From fermionic anti-symmetry: $\quad \hat{\Delta}(\mathbf{k})=-\hat{\Delta}^{T}(-\mathbf{k})$

$$
\Delta_{\alpha \beta}(\mathbf{k}) \sim\left\langle c_{-\mathbf{k} \alpha} c_{\mathbf{k} \beta}\right\rangle
$$

Review of basic symmetries of the order parameter

From fermionic anti-symmetry: $\quad \hat{\Delta}(\mathbf{k})=-\hat{\Delta}^{T}(-\mathbf{k})$

$$
\Delta_{\alpha \beta}(\mathbf{k}) \sim\left\langle c_{-\mathbf{k} \alpha} c_{\mathbf{k} \beta}\right\rangle
$$

If inversion is a symmetry: $P \hat{\Delta}(\mathbf{k}) P^{-1}=\hat{\Delta}(-\mathbf{k})= \pm \Delta(\mathbf{k})$
[Assumption: does not modify the internal DOFs]

Review of basic symmetries of the order parameter

From fermionic anti-symmetry: $\quad \hat{\Delta}(\mathbf{k})=-\hat{\Delta}^{T}(-\mathbf{k})$

$$
\Delta_{\alpha \beta}(\mathbf{k}) \sim\left\langle c_{-\mathbf{k} \alpha} c_{\mathbf{k} \beta}\right\rangle
$$

If inversion is a symmetry: $P \hat{\Delta}(\mathbf{k}) P^{-1}=\hat{\Delta}(-\mathbf{k})= \pm \Delta(\mathbf{k})$
[Assumption: does not modify the internal DOFs]

Two decoupled sectors of SC order parameters:

$$
\begin{aligned}
& \hat{\Delta}_{E}(\mathbf{k})=-\hat{\Delta}_{E}^{T}(-\mathbf{k})=-\hat{\Delta}_{E}^{T}(\mathbf{k}) \\
& \ldots \ldots \rightarrow\left(i \sigma_{2}\right) \\
& \sim|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle
\end{aligned}
$$

Spin Singlet
Even Parity

$$
\begin{aligned}
& \hat{\Delta}_{O}(\mathbf{k})=-\hat{\Delta}_{O}^{T}(-\mathbf{k})=\hat{\Delta}_{O}^{T}(\mathbf{k}) \\
& \quad \sigma_{3} \propto \sigma_{1}\left(i \sigma_{2}\right) \\
& \because \sigma_{0} \propto \sigma_{2}\left(i \sigma_{2}\right) \\
& \sigma_{1} \propto \sigma_{3}\left(i \sigma_{2}\right) \\
& \sim|\uparrow \uparrow\rangle-|\downarrow \downarrow\rangle \\
& \sim|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle \\
& \sim|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle
\end{aligned}
$$

Spin triplet
Odd Parity

Review of basic symmetries of the order parameter

From fermionic anti-symmetry: $\quad \hat{\Delta}(\mathbf{k})=-\hat{\Delta}^{T}(-\mathbf{k})$

$$
\Delta_{\alpha \beta}(\mathbf{k}) \sim\left\langle c_{-\mathbf{k} \alpha} c_{\mathbf{k} \beta}\right\rangle
$$

For a generic symmetry G :

$$
D(G) \hat{\Delta}(\mathbf{k}) D(G)^{-1}=\hat{\Delta}\left[D_{3 D}^{-1}(G) \mathbf{k}\right]= \pm \Delta(\mathbf{k})
$$

Review of basic symmetries of the order parameter

From fermionic anti-symmetry: $\quad \hat{\Delta}(\mathbf{k})=-\hat{\Delta}^{T}(-\mathbf{k})$

$$
\Delta_{\alpha \beta}(\mathbf{k}) \sim\left\langle c_{-\mathbf{k} \alpha} c_{\mathbf{k} \beta}\right\rangle
$$

For a generic symmetry G :

$$
D(G) \hat{\Delta}(\mathbf{k}) D(G)^{-1}=\hat{\Delta}\left[D_{3 D}^{-1}(G) \mathbf{k}\right]= \pm \Delta(\mathbf{k})
$$

Can classify the order parameter according to its properties under a given symmetry operation (as even/odd in analogy to the parity)

> Preserves
> Symmetry

Review of basic symmetries of the order parameter

From fermionic anti-symmetry: $\quad \hat{\Delta}(\mathbf{k})=-\hat{\Delta}^{T}(-\mathbf{k})$

$$
\Delta_{\alpha \beta}(\mathbf{k}) \sim\left\langle c_{-\mathbf{k} \alpha} c_{\mathbf{k} \beta}\right\rangle
$$

For a generic symmetry G :

$$
D(G) \hat{\Delta}(\mathbf{k}) D(G)^{-1}=\hat{\Delta}\left[D_{3 D}^{-1}(G) \mathbf{k}\right]= \pm \Delta(\mathbf{k})
$$

Can classify the order parameter according to its properties under a given symmetry operation (as even/odd in analogy to the parity)

Preserves Symmetry

Breaks
Symmetry

Note: Now there can be multiple symmetry operations present!
[Irreducible representations are now useful!]

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels \Rightarrow Basis Functions

D_{4} [dihedral] point group

Character table and irreducible representations (Irrep)

Basis functions

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations \Rightarrow Labels \Rightarrow Basis Functions

D_{4} [dihedral] point group

Character table and irreducible representations (Irrep)

- Bottom

Unconventional SC: (almost always) Nodal gap structure!
Basis Conventional SC: (almost always) Fully gapped!

Unconventional Superconductors

Special scenario I: 2D Irrep and Nematicity

Unconventional Superconductors

Special scenario I: 2D Irrep and Nematicity

Unconventional Superconductors

Special scenario I: 2D Irrep and Nematicity
Gap Gap amplitude

1D Irrep

...preserves the point group symmetry.

2D Irrep

[NEMATIC SC]
...breaks the point group symmetry.

S. Yonezawa et al., Nature Physics 13, 123 (2017)

Unconventional Superconductors

Special scenario II: 2D Irrep and TRSB

A complex superposition of the two components in a 2D irrep usually lifts the nodes (generally more stable):

Unconventional Superconductors

Special scenario II: 2D Irrep and TRSB

A complex superposition of the two components in a 2D irrep usually lifts the nodes (generally more stable):

Unconventional Superconductors

Special scenario II: 2D Irrep and TRSB

A complex superposition of the two components in a 2D irrep usually lifts the nodes (generally more stable):

[CHIRAL SC]
$\Delta(\mathbf{k}) \sim k_{x} \pm i k_{y}$
$|\Delta(\mathbf{k})| \sim k_{x}^{2}+k_{y}^{2}$

Note: Isotropic Gap, but certainly unconventional!

Unconventional Superconductors

Special scenario II: 2D Irrep and TRSB

A complex superposition of the two components in a 2 D irrep usually lifts the nodes (generally more stable):

[CHIRAL SC]

$\Delta(\mathbf{k}) \sim k_{x} \pm i k_{y}$
$|\Delta(\mathbf{k})| \sim k_{x}^{2}+k_{y}^{2}$

Note: Isotropic Gap, but certainly unconventional!
What are the observable consequences?

- Polar Kerr Effect
- Muon Spin Relaxation
$\mathrm{Sr}_{2} \mathrm{RuO}_{4}$

$\mathrm{D}_{4 \mathrm{~h}}=\mathrm{D}_{4}+$ inversion

$\mathbf{D}_{\mathbf{4 h}}$	\mathbf{E}	$\mathbf{2} \mathbf{C}_{\mathbf{4}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{2} \mathbf{C}_{\mathbf{2}}^{\prime}$	$\mathbf{2} \mathbf{C}_{\mathbf{2}}^{\prime \prime}$	\mathbf{i}	$\mathbf{2} \mathbf{S}_{\mathbf{4}}$	$\boldsymbol{\sigma}_{\mathbf{h}}$	$\mathbf{2} \boldsymbol{\sigma}_{\mathbf{v}}$	$\mathbf{2} \boldsymbol{\sigma}_{\mathbf{d}}$
$\mathbf{A}_{\mathbf{1 g}}$	1	1	1	1	1	1	1	1	1	1
$\mathbf{A}_{\mathbf{2 g}}$	1	1	1	-1	-1	1	1	1	-1	-1
$\mathbf{B}_{\mathbf{1 g}}$	1	-1	1	1	-1	1	-1	1	1	-1
$\mathbf{B}_{\mathbf{2}}$	1	-1	1	-1	1	1	-1	1	-1	1
$\mathbf{E}_{\mathbf{g}}$	2	0	-2	0	0	2	0	-2	0	0
$\mathbf{A}_{\mathbf{1 u}}$	1	1	1	1	1	-1	-1	-1	-1	-1
$\mathbf{A}_{\mathbf{2 u}}$	1	1	1	-1	-1	-1	-1	-1	1	1
$\mathbf{B}_{\mathbf{1 u}}$	1	-1	1	1	-1	-1	1	-1	-1	1
$\mathbf{B}_{\mathbf{2 u}}$	1	-1	1	-1	1	-1	1	-1	1	-1
$\mathbf{E}_{\mathbf{u}}$	2	0	-2	0	0	-2	0	2	0	0

$D_{4 h}=D_{4}+$ inversion

$\mathbf{D}_{\mathbf{4 h}}$ $h=16$	\mathbf{E}	$\mathbf{2} \mathbf{C}_{\mathbf{4}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{2} \mathbf{C}_{\mathbf{2}}^{\prime}$	$\mathbf{2} \mathbf{C}_{\mathbf{2}}^{\prime \prime}$	\mathbf{i}	$\mathbf{2} \mathbf{S}_{\mathbf{4}}$	$\mathbf{\sigma}_{\mathbf{h}}$	$\mathbf{2} \mathbf{\sigma}_{\mathbf{v}}$	$\mathbf{2} \mathbf{\sigma}_{\mathbf{d}}$
$\mathbf{A}_{\mathbf{1 g}}$	1	1	1	1	1	1	1	1	1	1
$\mathbf{A}_{\mathbf{2 g}}$	1	1	1	-1	-1	1	1	1	-1	-1
$\mathbf{B}_{\mathbf{1 g}}$	1	-1	1	1	-1	1	-1	1	1	-1
$\mathbf{B}_{\mathbf{2 g}}$	1	-1	1	-1	1	1	-1	1	-1	1
$\mathbf{E}_{\mathbf{g}}$	2	0	-2	0	0	2	0	-2	0	0
$\mathbf{A}_{\mathbf{1} \mathbf{u}}$	1	1	1	1	1	-1	-1	-1	-1	-1
$\mathbf{A}_{\mathbf{2 u}}$	1	1	1	-1	-1	-1	-1	-1	1	1
$\mathbf{B}_{\mathbf{1 u}}$	1	-1	1	1	-1	-1	1	-1	-1	1
$\mathbf{B}_{\mathbf{2 u}}$	1	-1	1	-1	1	-1	1	-1	1	-1
$\mathbf{E}_{\mathbf{u}}$	2	0	-2	0	0	-2	0	2	0	0

Symmetry of Rotations and Cartesian products

		Rot Trep -d- --t-- --g-- - --n--- - --- ---
$\mathrm{A}_{1 \mathrm{~g}}$		$\left.z^{2},\left(x^{2}-y^{2}\right)^{2}-4 x^{2} y^{2}, z^{4}, z^{2}\left(x^{2}-y^{2}\right)^{2}-4 x^{2} y^{2}\right), z^{6}$
$\mathrm{A}_{\mathbf{2 g}}$		$\mathrm{R}_{z}, x y\left(x^{2}-y^{2}\right), x z^{2}\left(x^{2}-y^{2}\right)$
$\mathrm{B}_{1 \mathrm{~g}}$	$\underbrace{\substack{\text { den }}}_{\substack{d+8+2 i \\ 2 k+3 \mathrm{~m}}}$	
$\mathrm{B}_{2 \mathrm{~g}}$		
Eg		
$\mathrm{A}_{1 \mathrm{u}}$		
$\mathrm{A}_{2 \mathrm{u}}$		पा
B_{14}	${ }_{\text {2fi }}^{\substack{\text { f+21 }}}$	
$\mathrm{B}_{2 \mathrm{u}}$	${ }_{\substack{\text { a }}}^{\substack{\text { f+ }+21}}$	
$\mathrm{E}_{\mathbf{u}}$	$\underbrace{}_{\substack{p+2 f+3 h \\ 4 j+51}}$	

$D_{4 h}=D_{4}+$ inversion

$\mathbf{D}_{\mathbf{4 h}}$ $\mathbf{h = 1 6}$	\mathbf{E}	$\mathbf{2} \mathbf{C}_{\mathbf{4}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{2} \mathbf{C}_{\mathbf{2}}^{\prime}$	$\mathbf{2} \mathbf{C}_{\mathbf{2}}^{\prime \prime}$	\mathbf{i}	$\mathbf{2} \mathbf{S}_{\mathbf{4}}$	$\mathbf{\sigma}_{\mathbf{h}}$	$\mathbf{2} \mathbf{\sigma}_{\mathbf{v}}$	$\mathbf{2} \mathbf{\sigma}_{\mathbf{d}}$
$\mathbf{A}_{\mathbf{1 g}}$	1	1	1	1	1	1	1	1	1	1
$\mathbf{A}_{\mathbf{2 g}}$	1	1	1	-1	-1	1	1	1	-1	-1
$\mathbf{B}_{\mathbf{1 g}}$	1	-1	1	1	-1	1	-1	1	1	-1
$\mathbf{B}_{\mathbf{2 g}}$	1	-1	1	-1	1	1	-1	1	-1	1
$\mathbf{E}_{\mathbf{g}}$	2	0	-2	0	0	2	0	-2	0	0
$\mathbf{A}_{\mathbf{1} \mathbf{u}}$	1	1	1	1	1	-1	-1	-1	-1	-1
$\mathbf{A}_{\mathbf{2 u}}$	1	1	1	-1	-1	-1	-1	-1	1	1
$\mathbf{B}_{\mathbf{1 u}}$	1	-1	1	1	-1	-1	1	-1	-1	1
$\mathbf{B}_{\mathbf{2 u}}$	1	-1	1	-1	1	-1	1	-1	1	-1
$\mathbf{E}_{\mathbf{u}}$	2	0	-2	0	0	-2	0	2	0	0

Symmetry of Rotations and Cartesian products

Only gives us information about the k-dependent part of the gap function.

$\mathrm{A}_{1 \mathrm{~g}}$		$\left.z^{2},\left(x^{2}-y^{2}\right)^{2}-4 x^{2} y^{2}, z^{4}, z^{2}\left(x^{2}-y^{2}\right)^{2}-4 x^{2} y^{2}\right), z^{6}$
$\mathrm{A}_{\mathbf{2 g}}$	$\underbrace{}_{\substack{\text { R }+8+\mathrm{i} \\ 2 \mathrm{k}+\mathrm{m}}}$	 $\mathrm{R}_{z}, x y\left(x^{2}-y^{2}\right), \quad x z^{2}\left(x^{2}-y^{2}\right)$
$\mathrm{B}_{1 \mathrm{~g}}$		$x^{2}-y^{2}, z^{2}\left(x^{2}-y^{2}\right), x^{2}\left(x^{2}-3 y^{2}\right)^{2}-y^{2}\left(3 x^{2}-y^{2}\right)^{2}, z^{4}\left(x^{2}-y^{2}\right)$
$\mathrm{B}_{2 \mathrm{~g}}$	$\underbrace{}_{\substack{\text { dit }+2 \mathrm{ta} \\ 2 \mathrm{c}+\mathrm{m}}}$	
Eg	${ }_{\substack{\text { a }}}^{\mathrm{R}+\mathrm{d}+2 \mathrm{t}+3 \mathrm{mi}}$	
$\mathrm{A}_{1 \mathrm{u}}$	${ }_{\text {d }}^{\substack{\text { j }}}$	
$\mathrm{A}_{2 \mathrm{u}}$		
$\mathrm{B}_{1 \mathrm{u}}$	${ }_{\substack{\text { a }}}^{\substack{\text { f+h } \\ 2 \text { 21 }}}$	
$\mathrm{B}_{2 \mathrm{u}}$	${ }_{\text {dij }}^{\substack{\text { fit } \\ 2+21}}$	$\prod_{z\left(x^{2}-y^{2}\right), z^{3}\left(x^{2}-y^{2}\right)}^{\text {ब. }}$
$\mathrm{E}_{\mathbf{u}}$	$\begin{array}{\|} \frac{p+2 f+3 h}{4 j+51} \end{array}$	

REVIEWS OF MODERN PHYSICS

Phenomenological theory of unconventional superconductivity

Manfred Sigrist and Kazuo Ueda
Rev. Mod. Phys. 63, 239 - Published 1 April 1991

TABLE IV. (a) Even-parity basis gap functions $\widehat{\Delta}(\Gamma, m ; \mathbf{k})=i \widehat{\sigma}_{y} \psi(\Gamma, m ; \mathbf{k})$ and (b) odd-parity basis gap functions $\widehat{\Delta}(\Gamma, m ; \mathbf{k})=i[\hat{\boldsymbol{\sigma}} \cdot \mathbf{d}(\Gamma, m ; \mathbf{k})] \widehat{\sigma}_{y}$ for the tetragonal lattice symmetry $\left(D_{4 h}\right)$.

Irreducible
representation $\Gamma \quad$ Basis function

```
(a)
\(\psi\left(\Gamma_{5}^{+}, 2 ; \mathbf{k}\right)=k_{y} k_{z}\)
(b)
\(\mathbf{d}\left(\Gamma_{5}^{-}, 2 ; \mathbf{k}\right)=\hat{\mathbf{y}} k_{z}, \hat{\mathbf{z}} k_{y}\)
```

$\Gamma_{1}^{+} \quad \psi\left(\Gamma_{1}^{+} ; \mathbf{k}\right)=1, k_{x}^{2}+k_{y}^{2}, k_{z}^{2}$
$\Gamma_{2}^{+} \quad \psi\left(\Gamma_{2}^{+} ; \mathbf{k}\right)=k_{x} k_{y}\left(k_{x}^{2}-k_{y}^{2}\right)$
$\Gamma_{3}^{+} \quad \psi\left(\Gamma_{3}^{+} ; \mathbf{k}\right)=k_{x}^{2}-k_{y}^{2}$
$\Gamma_{4}^{+} \quad \psi\left(\Gamma_{4}^{+} ; \mathbf{k}\right)=k_{x} k_{y}$
$\Gamma_{5}^{+} \quad \psi\left(\Gamma_{5}^{+}, 1 ; \mathbf{k}\right)=k_{x} k_{z}$
$\Gamma_{1}^{-} \quad \mathbf{d}\left(\Gamma_{1}^{-} ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{x}+\hat{\mathbf{y}} k_{y}, \hat{\mathbf{z}} k_{z}$
$\Gamma_{2}^{-} \quad \mathbf{d}\left(\Gamma_{2}^{-} ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{y}-\hat{\mathbf{y}} k_{x}$
$\Gamma_{3}^{-} \quad \mathbf{d}\left(\Gamma_{3}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{x}-\hat{\mathbf{y}} k_{x}$
$\Gamma_{4}^{-} \quad \mathbf{d}\left(\Gamma_{4}^{-} ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{y}+\hat{\mathbf{y}} k_{x}$
$\Gamma_{5}^{-} \quad \mathbf{d}\left(\Gamma_{5}^{-}, 1 ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{z}, \widehat{\mathbf{z}} k_{x}$

REVIEWS OF MODERN PHYSICS

Phenomenological theory of unconventional superconductivity

Manfred Sigrist and Kazuo Ueda
Rev. Mod. Phys. 63, 239 - Published 1 April 1991

TABLE IV. (a) Even-parity basis gap functions $\widehat{\Delta}(\Gamma, m ; \mathbf{k})=i \widehat{\sigma}_{y} \psi(\Gamma, m ; \mathbf{k})$ and (b) odd-parity basis gap functions $\widehat{\Delta}(\Gamma, m ; \mathbf{k})=i[\hat{\boldsymbol{\sigma}} \cdot \mathbf{d}(\Gamma, m ; \mathbf{k})] \widehat{\sigma}_{y}$ for the tetragonal lattice symmetry $\left(D_{4 h}\right)$.

Irreducible

representation Γ
Basis function

> | (a) |
| :--- |
| $\psi\left(\Gamma_{1}^{+} ; \mathbf{k}\right)=1, k_{x}^{2}+k_{y}^{2}, k_{z}^{2}$ |
| $\psi\left(\Gamma_{2}^{+} ; \mathbf{k}\right)=k_{x} k_{y}\left(k_{x}^{2}-k_{y}^{2}\right)$ |
| $\psi\left(\Gamma^{+} ; \mathbf{k}\right)=k_{x}^{2}-k_{y}^{2}$ |
| $\psi\left(\Gamma_{+}^{+} ; \mathbf{k}\right)=k_{x} k_{y}$ |
| $\psi\left(\Gamma_{5}^{+}, 1 ; \mathbf{k}\right)=k_{x} k_{z}$ |
| $\psi\left(\Gamma_{5}^{+}, 2 ; \mathbf{k}\right)=k_{y} k_{z}$ |
| (\mathbf{b}) |
| $\mathbf{d}\left(\Gamma_{1}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{x}+\widehat{\mathbf{y}} k_{y}, \widehat{\mathbf{z}} k_{z}$ |
| $\mathbf{d}\left(\Gamma_{2}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{y}-\hat{\mathbf{y}} k_{x}$ |
| $\mathbf{d}\left(\Gamma_{3}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{x}-\widehat{\mathbf{y}} k_{x}$ |
| $\mathbf{d}\left(\Gamma_{4}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{y}+\widehat{\mathbf{y}} k_{x}$ |
| $\mathbf{d}\left(\Gamma_{5}^{-}, 1 ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{z}, \widehat{\mathbf{z}} k_{x}$ |
| $\mathbf{d}\left(\Gamma_{5}^{-}, 2 ; \mathbf{k}\right)=\widehat{\mathbf{y}} k_{z}, \widehat{\mathbf{z}} k_{y}$ |

$\Gamma_{1}^{+} \quad \psi\left(\Gamma_{1}^{+} ; \mathbf{k}\right)=1, k_{x}^{2}+k_{y}^{2}, k_{z}^{2}$
$\Gamma_{1}^{-} \quad \mathbf{d}\left(\Gamma_{1}^{-} ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{x}+\hat{\mathbf{y}} k_{y}, \hat{\mathbf{z}} k_{z}$
$\Gamma_{2}^{-} \quad \mathbf{d}\left(\Gamma_{2}^{-} ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{y}-\hat{\mathbf{y}} k_{x}$
Γ_{3}^{-}
Γ_{4}^{-}
Γ_{5}^{-}

$\mathrm{A}_{1 \mathrm{~g}}$	$\begin{aligned} & \mathrm{d}+2 \mathrm{~g}+2 \mathrm{i} \\ & 3 \mathrm{k}+3 \mathrm{~m} \end{aligned}$	$z^{2}, \quad\left(x^{2}-y^{2}\right)^{2}-4 x^{2} y^{2}, \quad z^{4}$
$\mathrm{A}_{2 \mathrm{~g}}$	$\begin{aligned} & \mathrm{R}+\mathrm{g}+\mathrm{i} \\ & 2 \mathrm{k}+2 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \square \square \square \square \square \square \square \square \\ & \mathrm{R}_{z}, \quad x y\left(x^{2}-y^{2}\right), \quad x y z^{2}\left(x^{2}-\right. \end{aligned}$
$\mathrm{B}_{1 \mathrm{~g}}$	$\underset{2 \mathrm{k}+3 \mathrm{~m}}{\mathrm{~d}+\mathrm{g}+2 \mathrm{i}}$	$x^{2}-y^{2}, \quad z^{2}\left(x^{2}-y^{2}\right), \quad x^{2}\left(x^{2}\right.$
$\mathrm{B}_{2 \mathrm{~g}}$	$\underset{2 \mathrm{k}+3 \mathrm{~m}}{\mathrm{~d}+\mathrm{g}+2 \mathrm{i}}$	$x y, \quad x y z^{2}, \quad x y\left(x^{2}-3 y^{2}\right)(3 x$
\mathbf{E}_{g}	$\begin{aligned} & \mathrm{R}+\mathrm{d}+2 \mathrm{~g}+3 \mathrm{i} \\ & 4 \mathrm{k}+5 \mathrm{~m} \end{aligned}$	$\left\{\mathrm{R}_{x}, \mathrm{R}_{y}\right\}, \quad\{x z, y z\},\{$

REVIEWS OF MODERN PHYSICS

Phenomenological theory of unconventional superconductivity

Manfred Sigrist and Kazuo Ueda
Rev. Mod. Phys. 63, 239 - Published 1 April 1991

TABLE IV. (a) Even-parity basis gap functions $\widehat{\Delta}(\Gamma, m ; \mathbf{k})=i \widehat{\sigma}_{y} \psi(\Gamma, m ; \mathbf{k})$ and (b) odd-parity basis gap functions $\widehat{\Delta}(\Gamma, m ; \mathbf{k})=i[\hat{\boldsymbol{\sigma}} \cdot \mathbf{d}(\Gamma, m ; \mathbf{k})] \widehat{\sigma}_{y}$ for the tetragonal lattice symmetry $\left(D_{4 h}\right)$.

Irreducible
representation $\Gamma \quad$ Basis function

```
(a)
\(\psi\left(\Gamma_{5}^{+}, 2 ; \mathbf{k}\right)=k_{y} k_{z}\)
(b)
\(\mathbf{d}\left(\Gamma_{5}^{-}, 2 ; \mathbf{k}\right)=\hat{\mathbf{y}} k_{z}, \hat{\mathbf{z}} k_{y}\)
```

$\Gamma_{1}^{+} \quad \psi\left(\Gamma_{1}^{+} ; \mathbf{k}\right)=1, k_{x}^{2}+k_{y}^{2}, k_{z}^{2}$
$\Gamma_{2}^{+} \quad \psi\left(\Gamma_{2}^{+} ; \mathbf{k}\right)=k_{x} k_{y}\left(k_{x}^{2}-k_{y}^{2}\right)$
$\Gamma_{3}^{+} \quad \psi\left(\Gamma_{3}^{+} ; \mathbf{k}\right)=k_{x}^{2}-k_{y}^{2}$
$\Gamma_{4}^{+} \quad \psi\left(\Gamma_{4}^{+} ; \mathbf{k}\right)=k_{x} k_{y}$
$\Gamma_{5}^{+} \quad \psi\left(\Gamma_{5}^{+}, 1 ; \mathbf{k}\right)=k_{x} k_{z}$
$\Gamma_{1}^{-} \quad \mathbf{d}\left(\Gamma_{1}^{-} ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{x}+\hat{\mathbf{y}} k_{y}, \hat{\mathbf{z}} k_{z}$
$\Gamma_{2}^{-} \quad \mathbf{d}\left(\Gamma_{2}^{-} ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{y}-\hat{\mathbf{y}} k_{x}$
$\Gamma_{3}^{-} \quad \mathbf{d}\left(\Gamma_{3}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{x}-\hat{\mathbf{y}} k_{x}$
$\Gamma_{4}^{-} \quad \mathbf{d}\left(\Gamma_{4}^{-} ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{y}+\hat{\mathbf{y}} k_{x}$
$\Gamma_{5}^{-} \quad \mathbf{d}\left(\Gamma_{5}^{-}, 1 ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{z}, \widehat{\mathbf{z}} k_{x}$

REVIEWS OF MODERN PHYSICS

Phenomenological theory of unconventional superconductivity

Manfred Sigrist and Kazuo Ueda
Rev. Mod. Phys. 63, 239 - Published 1 April 1991

TABLE IV. (a) Even-parity basis gap functions $\widehat{\Delta}(\Gamma, m ; \mathbf{k})=i \widehat{\sigma}_{y} \psi(\Gamma, m ; \mathbf{k})$ and (b) odd-parity basis gap functions $\widehat{\Delta}(\Gamma, m ; \mathbf{k})=i[\hat{\boldsymbol{\sigma}} \cdot \mathbf{d}(\Gamma, m ; \mathbf{k})] \widehat{\sigma}_{y}$ for the tetragonal lattice symmetry $\left(D_{4 h}\right)$.

Irreducible

representation Γ
Basis function

$$
\begin{aligned}
& \text { (a) } \\
& \psi\left(\Gamma_{1}^{+} ; \mathbf{k}\right)=1, k_{x}^{2}+ \\
& \psi\left(\Gamma_{2}^{+} ; \mathbf{k}\right)=k_{x} k_{y}(k \\
& \psi\left(\Gamma_{3}^{+} ; \mathbf{k}\right)=k_{x}^{2}-k_{y}^{2} \\
& \psi\left(\Gamma_{4}^{+} ; \mathbf{k}\right)=k_{x} k_{y} \\
& \psi\left(\Gamma_{5}^{+}, 1 ; \mathbf{k}\right)=k_{x} k_{z} \\
& \psi\left(\Gamma_{5}^{+}, 2 ; \mathbf{k}\right)=k_{y} k_{z} \\
& \text { (b) }
\end{aligned}
$$

$\Gamma_{1}^{+} \quad \psi\left(\Gamma_{1}^{+} ; \mathbf{k}\right)=1, k_{x}^{2}+k_{y}^{2}, k_{z}^{2}$
$\Gamma_{2}^{+} \quad \psi\left(\Gamma_{2}^{+} ; \mathbf{k}\right)=k_{x} k_{y}\left(k_{x}^{2}-k_{y}^{2}\right)$
$\Gamma_{3}^{+} \quad \psi\left(\Gamma_{3}^{+} ; \mathbf{k}\right)=k_{x}^{2}-k_{y}^{2}$
$\Gamma_{4}^{+} \quad \psi\left(\Gamma_{4}^{+} ; \mathrm{k}\right)=k_{x} k_{y}$
$\Gamma_{5}^{+} \quad \psi\left(\Gamma_{5}^{+}, 1 ; \mathbf{k}\right)=k_{x} k_{z}$

Γ_{1}^{-}	$\mathbf{d}\left(\Gamma_{1}^{-} ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{x}+\hat{\mathbf{y}} k_{y}, \widehat{\mathbf{z}} k_{z}$
Γ_{2}^{-}	$\mathbf{d}\left(\Gamma_{2}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{y}-\hat{\mathbf{y}} k_{x}$
Γ_{3}^{-}	$\mathbf{d}\left(\Gamma_{3}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{x}-\widehat{\mathbf{y}} k_{x}$
Γ_{4}^{-}	$\mathbf{d}\left(\Gamma_{4}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{y}+\widehat{\mathbf{y}} k_{x}$
Γ_{5}^{-}	$\mathbf{d}\left(\Gamma_{5}^{-}, 1 ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{z}, \widehat{\mathbf{z}} k_{x}$
	$\mathbf{d}\left(\Gamma_{5}^{-}, 2 ; \mathbf{k}\right)=\hat{\mathbf{y}} k_{z}, \widehat{\mathbf{z}} k_{y}$

$\mathbf{A}_{1 \mathbf{u}}$	$\begin{aligned} & \text { h } \\ & j+21 \end{aligned}$	$\square \square \square \square \square \square \square \square \square \square \square$ $x y z\left(x^{2}-y^{2}\right)$
$\mathbf{A}_{2 \mathrm{u}}$	$\underset{2 \mathrm{j}+3 \mathrm{i}}{\mathrm{p}+\mathrm{f}+2 \mathrm{~h}}$	$z, \quad z^{3}, \quad z\left(\left(x^{2}-y^{2}\right)^{2}-4 x^{2} y^{2}\right), \quad z^{5}$
B_{14}	$\begin{aligned} & \mathrm{f}+\mathrm{h} \\ & 2 \mathrm{j}+21 \end{aligned}$	\square $\square \square$ \square \qquad IIL $x y z, \quad x y z^{3}$
$\mathbf{B}_{2 u}$	$\begin{aligned} & \mathrm{f}+\mathrm{h} \\ & 2 \mathrm{j}+21 \end{aligned}$	$z\left(x^{2}-y^{2}\right), \quad z^{3}\left(x^{2}-y^{2}\right)$
$\mathbf{E}_{\mathbf{u}}$	$\begin{aligned} & \mathrm{p}+2 \mathrm{f}+3 \mathrm{~h} \\ & 4 \mathrm{j}+51 \end{aligned}$	$\{x, y\}, \quad\left\{x\left(x^{2}-3 y^{2}\right), y\left(3 x^{2}-y^{2}\right)\right\},$

REVIEWS OF MODERN PHYSICS

Phenomenological theory of unconventional superconductivity

Manfred Sigrist and Kazuo Ueda
Rev. Mod. Phys. 63, 239 - Published 1 April 1991

TABLE IV. (a) Even-parity basis gap functions $\widehat{\Delta}(\Gamma, m ; \mathbf{k})=i \widehat{\sigma}_{y} \psi(\Gamma, m ; \mathbf{k})$ and (b) odd-parity basis gap functions $\widehat{\Delta}(\Gamma, m ; \mathbf{k})=i[\hat{\boldsymbol{\sigma}} \cdot \mathbf{d}(\Gamma, m ; \mathbf{k})] \widehat{\sigma}_{y}$ for the tetragonal lattice symmetry $\left(D_{4 h}\right)$.

Irreducible
representation $\Gamma \quad$ Basis function

$$
\begin{aligned}
& (\mathrm{a}) \\
& \psi\left(\Gamma_{1}^{+} ; \mathbf{k}\right)=1, k_{x}^{2}+k_{y}^{2}, \\
& \psi\left(\Gamma_{2}^{+} ; \mathbf{k}\right)=k_{x} k_{y}\left(k_{x}^{2}-\right. \\
& \psi\left(\Gamma_{+}^{+} ; \mathbf{k}\right)=k_{x}^{2}-k_{y}^{2} \\
& \psi\left(\Gamma_{+}^{+} ; \mathbf{k}\right)=k_{x} k_{y} \\
& \psi\left(\Gamma_{5}^{+}, 1 ; \mathbf{k}\right)=k_{x} k_{z} \\
& \psi\left(\Gamma_{5}^{+}, 2 ; \mathbf{k}\right)=k_{y} k_{z} \\
& (\mathbf{b}) \\
& \mathbf{d}\left(\Gamma_{1}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{x}+\hat{\mathbf{y}} k_{y}, \\
& \mathbf{d}\left(\Gamma_{2}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{y}-\hat{\mathbf{y}} k_{x} \\
& \mathbf{d}\left(\Gamma_{3}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{x}-\hat{\mathbf{y}} k_{x} \\
& \mathbf{d}\left(\Gamma_{4}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{y}+\widehat{\mathbf{y}} k_{x} \\
& \mathbf{d}\left(\Gamma_{5}^{-}, 1 ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{z}, \widehat{\mathbf{z}} k_{x} \\
& \mathbf{d}\left(\Gamma_{5}^{-}, 2 ; \mathbf{k}\right)=\widehat{\mathbf{y}} k_{z}, \widehat{\mathbf{z}} k_{y} \\
& \hline
\end{aligned}
$$

Γ_{1}^{+}	$\psi\left(\Gamma_{+}^{+} ; \mathbf{k}\right)=1, k_{x}^{2}+k_{y}^{2}, k_{z}^{2}$
Γ_{2}^{+}	$\psi\left(\Gamma_{2}^{+} ; \mathbf{k}\right)=k_{x} k_{y}\left(k_{x}^{2}-k_{y}^{2}\right)$
Γ_{3}^{+}	$\psi\left(\Gamma_{3}^{+} ; \mathbf{k}\right)=k_{x}^{2}-k_{y}^{2}$
Γ_{4}^{+}	$\psi\left(\Gamma_{4}^{+} ; \mathbf{k}\right)=k_{x} k_{y}$
Γ_{5}^{+}	$\psi\left(\Gamma_{5}^{+}, 1 ; \mathbf{k}\right)=k_{x} k_{z}$
	$\psi\left(\Gamma_{5}^{+}, 2 ; \mathbf{k}\right)=k_{y} k_{z}$

$\Gamma_{1}^{-} \quad \mathbf{d}\left(\Gamma_{1}^{-} ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{x}+\hat{\mathbf{y}} k_{y}, \hat{\mathbf{z}} k_{z}$
$\Gamma_{2}^{-} \quad \mathbf{d}\left(\Gamma_{2}^{-} ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{y}-\hat{\mathbf{y}} k_{x}$
$\Gamma_{3}^{-} \quad \mathbf{d}\left(\Gamma_{3}^{-} ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{x}-\hat{\mathbf{y}} k_{x}$
$\Gamma_{4}^{-} \quad \mathbf{d}\left(\Gamma_{4}^{-} ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{y}+\hat{\mathbf{y}} k_{x}$
$\Gamma_{5}^{-} \quad \mathbf{d}\left(\Gamma_{5}^{-}, 1 ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{z}, \hat{\mathbf{z}} k_{x}$

In the presence of SOC:

Symmetry operations also act on the spin DOF and influence the classification of SC order parameters.

Spin singlet (associated with σ_{0}) always transforms trivially;

The irreps associated with each spin configuration in the triplet sector can be deduced from the explicit form of the generators:

$$
\begin{aligned}
& C_{4 z}=e^{i \pi \sigma_{3} / 4}=\frac{\sigma_{0}-i \sigma_{3}}{\sqrt{2}} \\
& C_{2 x}=e^{i \pi \sigma_{1} / 2}=i \sigma_{1} \\
& P=\sigma_{0} \quad \text { Homework! }
\end{aligned}
$$

REVIEWS OF MODERN PHYSICS

Phenomenological theory of unconventional superconductivity

Manfred Sigrist and Kazuo Ueda
Rev. Mod. Phys. 63, 239 - Published 1 April 1991

Complete classification of SC order parameters from the perspective of point groups!

TABLE II. (a) $\widehat{\Delta}(\Gamma, m ; \mathbf{k})=i \widehat{\boldsymbol{\sigma}}_{y} \psi(\Gamma$ tions $\widehat{\Delta}(\Gamma, m ; \mathbf{k})=i[$ metry $\left(O_{h}\right)$.	Even-parity basis gap functions $m ; \mathbf{k}$) and (b) odd-parity basis gap func$\hat{\boldsymbol{\sigma}} \cdot \mathbf{d}(\Gamma, m ; \mathbf{k})] \widehat{\sigma}_{y}$ for the cubic lattice sym-	TABLE III. (a) $\widehat{\Delta}(\Gamma, m ; \mathbf{k})=i \widehat{\sigma}_{y} \psi(\Gamma$, tions $\widehat{\Delta}(\Gamma, m ; \mathbf{k})=i[$ symmetry ($D_{6 h}$).	Even-parity basis gap functions $; \mathbf{k}$) and (b) odd-parity basis gap func$\mathbf{d}(\Gamma, m ; \mathbf{k})] \hat{\sigma}_{y}$ for the hexagonal lattice
Irreducible representation Γ	Basis functions	Irreducible representation Γ	Basis functions
	(a)		(a)
Γ_{1}^{+}	$\psi\left(\Gamma_{1}^{+} ; \mathbf{k}\right)=1, k_{x}^{2}+k_{y}^{2}+k_{z}^{2}$	Γ_{1}^{+}	$\psi\left(\Gamma_{1}^{+} ; \mathbf{k}\right)=1, k_{x}^{2}+k_{y}^{2}, k_{z}^{2}$
Γ_{2}^{+}	$\psi\left(\Gamma_{2}^{+} ; \mathbf{k}\right)=\left(k_{x}^{2}-k_{y}^{2}\right)\left(k_{y}^{2}-k_{z}^{2}\right)\left(k_{z}^{2}-k_{x}^{2}\right)$	Γ_{2}^{+} Γ_{3}^{+}	$\begin{aligned} & \psi\left(\Gamma_{2}^{+} ; \mathbf{k}\right)=k_{x} k_{y}\left(k_{x}^{2}-3 k_{y}^{2}\right)\left(k_{y}^{2}-3 k_{x}^{2}\right) \\ & \psi\left(\Gamma_{3}^{+} ; \mathbf{k}\right)=k_{z} k_{x}\left(k_{x}^{2}-3 k_{y}^{2}\right) \end{aligned}$
Γ_{3}^{+}	$\psi\left(\Gamma_{3}^{+}, 1 ; \mathbf{k}\right)=2 k_{z}^{2}-k_{x}^{2}-k_{y}^{2}$	Γ_{4}^{+}	$\psi\left(\Gamma_{4}^{+} ; \mathbf{k}\right)=k_{z} k_{y}\left(k_{y}^{2}-3 k_{x}^{2}\right)$
	$\psi\left(\Gamma_{3}^{+}, 2 ; \mathbf{k}\right)=\sqrt{3}\left(k_{x}^{2}-k_{y}^{2}\right)$	Γ_{5}^{+}	$\psi\left(\Gamma_{5}^{+}, 1 ; \mathbf{k}\right)=k_{x} k_{z}$
Γ_{4}^{+}	$\psi\left(\Gamma_{4}^{+}, 1 ; \mathbf{k}\right)=k_{y} k_{z}\left(k_{y}^{2}-k_{z}^{2}\right)$		$\psi\left(\Gamma_{5}^{+}, 2 ; \mathbf{k}\right)=k_{y} k_{z}$
	$\psi\left(\Gamma_{4}^{+}, 2 ; \mathbf{k}\right)=k_{z} k_{x}\left(k_{z}^{2}-k_{x}^{2}\right)$	Γ_{6}^{+}	
	$\psi\left(\Gamma_{4}^{+}, 3 ; \mathbf{k}\right)=k_{x} k_{y}\left(k_{x}^{2}-k_{y}^{2}\right)$	Γ_{6}	$\begin{aligned} & \psi\left(\Gamma_{6}^{+}, 1 ; \mathbf{k}\right)=k_{x}^{2}-k_{y}^{2} \\ & \psi\left(\Gamma_{6}^{+}, 2 ; \mathbf{k}\right)=2 k_{x} k_{y} \end{aligned}$
Γ_{5}^{+}	$\psi\left(\Gamma_{5}^{+}, 1 ; \mathbf{k}\right)=k_{y} k_{z}$		(b)
	$\psi\left(\Gamma_{5}^{+}, 2 ; \mathbf{k}\right)=k_{z} k_{x}$	Γ_{1}^{-}	$\mathbf{d}\left(\Gamma_{1}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{x}+\hat{\mathbf{y}} k_{y}, \widehat{\mathbf{z}} k_{z}$
	$\psi\left(\Gamma_{5}^{+}, 3 ; \mathbf{k}\right)=k_{x} k_{y}$	Γ_{2}^{-}	$\mathbf{d}\left(\Gamma_{2}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{y}-\hat{\mathbf{y}} k_{x}$
	(b)	Γ_{3}^{-}	$\begin{aligned} \mathrm{d}\left(\Gamma_{3}^{-} ; \mathbf{k}\right)= & \widehat{\mathbf{z}} k_{x}\left(k_{x}^{2}-3 k_{y}^{2}\right), \\ & k_{z}\left[\left(k_{x}^{2}-k_{y}^{2}\right) \hat{\mathbf{x}}-2 k_{x} k_{y} \hat{\mathbf{y}}\right]\end{aligned}$
Γ_{1}^{-}	$\mathbf{d}\left(\Gamma_{1}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{x}+\hat{\mathbf{y}} k_{y}+\hat{\mathbf{z}} k_{z}$		$k_{z}\left[\left(k_{x}^{2}-k_{y}^{2}\right) \widehat{\mathbf{x}}-2 k_{x} k_{y} \hat{\mathbf{y}}\right]$
Γ_{2}^{-}	$\begin{aligned} \mathbf{d}\left(\Gamma_{2}^{-} ; \mathbf{k}\right) & =\widehat{\mathbf{x}} k_{x}\left(k_{z}^{2}-k_{y}^{2}\right)+\widehat{\mathbf{y}} k_{y}\left(k_{x}^{2}-k_{z}^{2}\right) \\ & +\widehat{\mathbf{z}} k_{z}\left(k_{y}^{2}-k_{x}^{2}\right) \end{aligned}$	Γ_{4}^{-}	$\begin{aligned} \mathbf{d}\left(\Gamma_{4}^{-} ; \mathbf{k}\right)= & \hat{\mathbf{z}} k_{y}\left(k_{y}^{2}-3 k_{x}^{2}\right), \\ & k_{z}\left[\left(k_{y}^{2}-k_{x}^{2}\right) \hat{\mathbf{y}}-2 k_{x} k_{y} \hat{\mathbf{x}}\right] \end{aligned}$
Γ_{3}^{-}	$\begin{aligned} & \mathbf{d}\left(\Gamma_{3}^{-}, 1 ; \mathbf{k}\right)=2 \widehat{\mathbf{z}} k_{z}-\hat{\mathbf{x}} k_{x}-\hat{\mathbf{y}} k_{y} \\ & \mathbf{d}\left(\Gamma_{3}^{-}, 2 ; \mathbf{k}\right)=\sqrt{3}\left(\widehat{\mathbf{x}} k_{x}-\hat{\mathbf{y}} k_{y}\right) \end{aligned}$	Γ_{5}^{-}	$\begin{aligned} & \mathbf{d}\left(\Gamma_{5}^{-}, 1 ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{z}, \hat{\mathbf{z}} k_{x} \\ & \mathbf{d}\left(\Gamma_{5}^{-}, 2 ; \mathbf{k}\right)=\hat{\mathbf{y}} k_{z}, \widehat{\mathbf{z}} k_{y} \end{aligned}$
Γ_{4}^{-}	$\begin{aligned} & \mathbf{d}\left(\Gamma_{4}^{-}, 1 ; \mathbf{k}\right)=\hat{\mathbf{y}} k_{z}-\hat{\mathbf{z}} k_{y} \\ & \mathbf{d}\left(\Gamma_{4}^{-}, 2 ; \mathbf{k}\right)=\widehat{\mathbf{z}} k_{x}-\hat{\mathbf{x}} k_{z} \end{aligned}$	Γ_{6}^{-}	$\begin{aligned} & \mathbf{d}\left(\Gamma_{6}^{-}, 1 ; \mathbf{k}\right)=\hat{\mathbf{x}} k_{x}-\hat{\mathbf{y}} k_{y} \\ & \mathbf{d}\left(\Gamma_{6}^{-}, 2 ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{y}-\hat{\mathbf{y}} k_{x} \end{aligned}$

$\widehat{\widehat{\Delta}(\Gamma, m ; \mathbf{k})=i \widehat{\sigma}_{\nu} \psi(\Gamma, m ; \mathbf{k}) \text { and (b) odd-parity basis gap func- }}$ tions $\widehat{\Delta}(\Gamma, m ; \mathbf{k})=i[\hat{\boldsymbol{\sigma}} \cdot \mathbf{d}(\Gamma, m ; \mathbf{k})] \hat{\sigma}_{y}$ for the tetragonal lattice symmetry $\left(D_{4 h}\right)$.

Irreducible

representation $\Gamma \quad$ Basis function

(a)

$\psi\left(\Gamma_{1}^{+} ; \mathbf{k}\right)=1, k_{x}^{2}+k_{y}^{2}, k_{z}^{2}$
$\psi\left(\Gamma_{2}^{+} ; \mathbf{k}\right)=k_{x} k_{y}\left(k_{x}^{2}-k_{y}^{2}\right)$
$\psi\left(\Gamma_{3}^{+} ; \mathbf{k}\right)=k_{x}^{2}-k_{y}^{2}$
$\psi\left(\Gamma_{4}^{+} ; \mathbf{k}\right)=k_{x} k_{y}$
$\psi\left(\Gamma_{5}^{+}, 1 ; \mathbf{k}\right)=k_{x} k_{z}$
$\psi\left(\Gamma_{5}^{+}, 2 ; \mathbf{k}\right)=k_{y} k_{z}$
(b)
$\mathbf{d}\left(\Gamma_{1}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{x}+\hat{\mathbf{y}} k_{y}, \hat{\mathbf{z}} k_{z}$
$\mathbf{d}\left(\Gamma_{2}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{y}-\widehat{\mathbf{y}} k_{x}$
$\mathbf{d}\left(\Gamma_{3}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{x}-\widehat{\mathbf{y}} k_{x}$
$\mathbf{d}\left(\Gamma_{4}^{-} ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{y}+\hat{\mathbf{y}} k_{x}$
$\mathbf{d}\left(\Gamma_{5}, 1 ; \mathbf{k}\right)=\widehat{\mathbf{x}} k_{z}, \widehat{\mathbf{z}} k_{x}$
$\mathrm{d}\left(\Gamma_{5}^{-}, 2 ; \mathbf{k}\right)=\hat{\mathbf{y}} k_{z}, \hat{\mathbf{z}} k^{2}$

Can deduce irreps for all other point groups by "symmetry descent"

No.	Label		Elements
Triclinic			
1	1	C_{1}	E
2	$\overline{1}$	C_{i}	E, I
Monoclinic			
3	2	C_{2}	E, C C_{2}
4	m	$C_{0} C_{2}$	E, σ_{2}
5	2/m	$\mathrm{C}_{2 \mathrm{~h}}$	$E, C_{2 z}, I, \sigma_{z}$
Orthorhombic			
6	222	D_{2}	$E, C_{2 x}, C_{2 y} C_{2}$
7	$m m 2$	$C_{2 v}$	E, $C_{2 x}, \sigma_{x}, \sigma_{y}$
8	mmm	$D_{2 A}$	$E_{2} C_{2 x}, C_{2 y}, C_{2 z}, I, \sigma_{2}, a_{y}, \sigma_{z}$
Tetragonal			
9	4	C_{4}	E, $C_{4 z}^{+}, C_{4 z}^{-}, C_{2 z}$
10	$\overline{4}$	S_{4}	E, $S_{4 z}, S_{4 z}^{4}, C_{2 z}$
11	4/m	$C_{4 t}$	$E, C_{4 z}^{+}, C_{4 z}, C_{2 z}, I_{+} S_{4 z}, S_{4 z}^{+}, \sigma_{z}$
12	422	b_{4}	E, $C_{42}^{+}, C_{4 x}^{-}, C_{2 z}, C_{2 s}, C_{2 s}, C_{2 a}, C_{2 b}$
13	4 mm	C_{4},	$E, C_{4 y}^{+}, C_{4 y}^{-}, C_{2 z}, \sigma_{x}, \sigma_{y}, \sigma_{d a}, \sigma_{d b}$
14	42m	D_{24}	$E, S_{4 z}^{+}, S_{4 z}^{-}, C_{3 z}, C_{2 x}, C_{2 y}, \sigma_{d 0}, \sigma_{d b}$
15	$4 / \mathrm{mmm}$	$D_{4 h}$	$\begin{aligned} & E, C_{4 z}^{\mathrm{L}}, C_{4=}, C_{2 z}, C_{2 x}, C_{2 y}, C_{2 \mu}, C_{2 b} \\ & I, S_{4 z}^{-}, S_{4 z}^{\mathrm{S}}, \sigma_{z}, \sigma_{x}, \sigma_{y}, \sigma_{d u:} \sigma_{d} \end{aligned}$
Trigonal			
16	3	C_{3}	E, C_{3}^{1}, C_{3}
17	$\overline{3}$	$C_{3 i}$	$E_{1} C_{3}^{+}, C_{3}, I, S_{6}^{-}, S_{6}^{+}$
18	32	D_{3}	$E_{,}^{\prime} C_{3}^{+}, C_{3}^{-}, C_{21}^{\prime \prime}, C_{22}^{\prime \prime}, C_{23}^{\prime \prime}$
19	3 m	C_{3}	$E, C_{3}^{+}, C_{3}^{-}, \sigma_{d 1}, \sigma_{22}, \sigma_{d 3}$
20	$\overline{3} m$	$D_{3 d}$	E. $C_{3}^{+}, C_{3}, C_{21}^{\prime}, C_{22}^{\prime}, C_{23}^{\prime}, I, S_{6}^{-}, S_{6}^{+}, \sigma_{d 1}, \sigma_{A 2}, \sigma_{43}$
Hexagonal			
21	6	C_{6}	$E_{2} C_{n}^{+}, C_{4}^{-}, \mathrm{C}_{3}^{+}, \mathrm{C}_{3}^{-}, C_{2}$
22	$\overline{6}$	C_{3}	$E, S_{3}^{-}, S_{3}^{+}, C_{3}^{-}, C_{3}^{-}, \sigma_{6}$
23	$6 / m$	$C_{\text {b }}$	$E, C_{6}^{+}, C_{6}^{-}, C^{-}, C_{3}^{-}, C_{2}, I, S_{3}, S_{3}^{1}, S_{6}, S_{6}^{-}, \sigma_{n}$
24	622	D_{0}	$E, C_{6}^{\prime}, C_{6}, C_{3}^{\prime}, C_{3}, C_{2}, C_{21}^{\prime}, C_{22}^{\prime}, C_{23}^{\prime}, C_{21}^{\prime}, C_{22}^{\prime \prime}, C_{23}^{*}$
25	6 mm	C_{60}	$E_{1}, C_{6}^{\prime}, C_{6}, C_{3}, C_{3}, C_{2}, \sigma_{41}, \sigma_{22}, \sigma_{d 3}, \sigma_{21}, \sigma_{12}, \sigma_{43}$
26	$\overline{6} 2 \mathrm{~m}$	$D_{3 k}$	$E, S_{3}^{-}, S_{3}^{+}, C_{3}^{+}, C_{3}^{-}, \sigma_{h,} C_{21}^{\prime}, C_{22}^{\prime}, C_{23}^{\prime}, \sigma_{13}, \sigma_{02}, \sigma_{2,}$
27	6 mmm	$D_{\text {on }}$	$\begin{aligned} & E, C_{6}^{+}, C_{6}^{-}, C_{3}^{-}, C_{3}^{-}, C_{2}, C_{21}^{\prime}, C_{22}^{\prime}, C_{23}, C_{21}^{\prime}, C_{22}^{\prime}, C_{23}^{\prime \prime} \\ & I, S_{3}, S_{3}^{\prime}, S_{6}, S_{6}^{\prime}, \sigma_{h}, \sigma_{d 1}, \sigma_{d 2}, \sigma_{t 1}, \sigma_{v 1}, \sigma_{22}, \sigma_{v 3} \end{aligned}$
Cubic			
28	23	T	$E, C_{2 m}, C_{3}, C_{3}$
29	m3	T_{s}	$E, C_{2 m}, C_{3 j}^{-}, C_{3 i}^{-},,^{\prime}, S_{m b}^{-}, S_{6 j}^{+}$
30 31	432	0	$E, C_{2 m}, C_{3_{1}}^{+}, C_{3}^{-}, C_{2 p}, C_{4 m}^{-}, C_{4 m}^{-}$
31	43 m	T_{d}	$E, C_{2 m}, C_{3 j}^{*}, C_{3 j}^{-}, \sigma_{d p}, S_{4 m}^{*}, S_{4 m}^{+}$
32	m3m	O_{n}	$\begin{aligned} & K, C_{2 m:} C_{3 j}, C_{3 j}, C_{2 p}, C_{4 m:}^{1} C_{4 m} \\ & I, \sigma_{m}, S_{6 j}^{-}, S_{6 j}^{+}, \sigma_{d p}, S_{4,}^{-}, S_{4 m}^{-} \end{aligned}$

Have we covered everything? Is the Sigrist-Ueda classification "complete"?

"Yes and No!"

Have we covered everything?
 Is the Sigrist-Ueda classification "complete"?

[Generalizations]

I) Multiple internal DOF
II) Nonsymmorphic systems [Space group]

Have we covered everything?
 Is the Sigrist-Ueda classification "complete"?

[Generalizations]

I) Multiple internal DOF
II) Nonsymmorphic systems [Space group]

How to describe the superconducting states in complex materials with multiple internal DOFs?

Considering multiple internal DOF (orbitals/sublattice)

$$
\begin{aligned}
& \text { Annica's Lecture: } \\
& \text { The mean-field BdG Hamiltonian } \\
& \hat{H}_{B d G}(\mathbf{k})=\left(\begin{array}{cc}
\hat{H}_{0}(\mathbf{k}) & \hat{\Delta}(\mathbf{k}) \\
\hat{\Delta}^{\dagger}(\mathbf{k}) & -\hat{H}_{0}^{*}(-\mathbf{k})
\end{array}\right)
\end{aligned}
$$

$$
\hat{\Delta}(\mathbf{k})=\sum_{a b} d_{a b}(\mathbf{k}) \hat{\tau}_{a} \otimes \hat{\sigma}_{b}\left(i \hat{\sigma}_{2}\right)
$$

Considering multiple internal DOF (orbitals/sublattice)

In principle parametrised in terms of $(3+1) \times(3+1)=16$ functions $d_{a b}(k)$

$$
\begin{aligned}
& \sigma_{1}=\sigma_{\mathrm{x}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \sigma_{2}=\sigma_{\mathrm{y}}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \sigma_{3}=\sigma_{\mathrm{z}}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

If $a=0,3$: Intra-orbital/SL
If $a=1,2$: Inter-orbital/SL

If $b=0$: Spin Singlet
If $b=1,2,3$: Spin Triplet

The basic symmetries of the order parameter

$$
\hat{\Delta}(\mathbf{k})=\sum_{a b} d_{a b}(\mathbf{k}) \hat{\tau}_{a} \otimes \hat{\sigma}_{b}\left(i \hat{\sigma}_{2}\right)
$$

$[a, b]$	$\hat{\hat{a}}_{a}$	$\hat{\sigma}_{b}\left(i \sigma_{2}\right)$	Matrix	\mathbf{k}
$[0,0]$	S	A	A	E
$[0,1]$	S	S	S	O
$[0,2]$	S	S	S	O
$[0,3]$	S	S	S	O
$[1,0]$	S	A	A	E
$[1,1]$	S	S	S	O
$[1,2]$	S	S	S	O
$[1,3]$	S	S	S	O
$[2,0]$	A	A	S	O
$[2,1]$	A	S	A	E
$[2,2]$	A	S	A	E
$[2,3]$	A	S	A	E
$[3,0]$	S	A	A	E
$[3,1]$	S	S	S	O
$[3,2]$	S	S	S	O
$[3,3]$	S	S	S	O

The basic symmetries of the order parameter

$$
\begin{aligned}
& \text { Annica's Lecture: } \\
& \hat{\Delta}(\mathbf{k})=-\hat{\Delta}^{T}(-\mathbf{k})
\end{aligned}
$$

If the matrix is anti-symmetric: k-even If the matrix is symmetric: \mathbf{k}-odd

$$
\hat{\Delta}(\mathbf{k})=\sum_{a b} d_{a b}(\mathbf{k}) \hat{\tau}_{a} \otimes \hat{\sigma}_{b}\left(i \hat{\sigma}_{2}\right)
$$

$[a, b]$	$\hat{\tau}_{a}$	$\hat{\sigma}_{b}\left(i \sigma_{2}\right)$	Matrix	\mathbf{k}
$[0,0]$	S	A	A	E
$[0,1]$	S	S	S	O
$[0,2]$	S	S	S	O
$[0,3]$	S	S	S	O
$[1,0]$	S	A	A	E
$[1,1]$	S	S	S	O
$[1,2]$	S	S	S	O
$[1,3]$	S	S	S	O
$[2,0]$	A	A	S	O
$[2,1]$	A	S	A	E
$[2,2]$	A	S	A	E
$[2,3]$	A	S	A	E
$[3,0]$	S	A	A	E
$[3,1]$	S	S	S	O
$[3,2]$	S	S	S	O
$[3,3]$	S	S	S	O

The basic symmetries of the order parameter

> Annica's Lecture:
> $\hat{\Delta}(\mathbf{k})=-\hat{\Delta}^{T}(-\mathbf{k})$

If the matrix is anti-symmetric: k-even If the matrix is symmetric: k-odd

$$
\hat{\Delta}(\mathbf{k})=\sum_{a b} d_{a b}(\mathbf{k}) \hat{\tau}_{a} \otimes \hat{\sigma}_{b}\left(i \hat{\sigma}_{2}\right)
$$

Inversion symmetry:

Equal parity: $\quad P= \pm \hat{\tau}_{0} \otimes \hat{\sigma}_{0}$
Opposite parity: $\quad P=\hat{\tau}_{3} \otimes \hat{\sigma}_{0}$
Sublattice: $\quad P=\hat{\tau}_{1} \otimes \hat{\sigma}_{0}$

$[a, b]$	$\hat{\tau}_{a}$	$\hat{\sigma}_{b}\left(i \sigma_{2}\right)$	Matrix	\mathbf{k}
$[0,0]$	S	A	A	E
$[0,1]$	S	S	S	O
$[0,2]$	S	S	S	O
$[0,3]$	S	S	S	O
$[1,0]$	S	A	A	E
$[1,1]$	S	S	S	O
$[1,2]$	S	S	S	O
$[1,3]$	S	S	S	O
$[2,0]$	A	A	S	O
$[2,1]$	A	S	A	E
$[2,2]$	A	S	A	E
$[2,3]$	A	S	A	E
$[3,0]$	S	A	A	E
$[3,1]$	S	S	S	O
$[3,2]$	S	S	S	O
$[3,3]$	S	S	S	O

The basic symmetries of the order parameter

> Annica's Lecture:

$$
\hat{\Delta}(\mathbf{k})=-\hat{\Delta}^{T}(-\mathbf{k})
$$

If the matrix is anti-symmetric: k-even If the matrix is symmetric: \mathbf{k}-odd

$$
\hat{\Delta}(\mathbf{k})=\sum_{a b} d_{a b}(\mathbf{k}) \hat{\tau}_{a} \otimes \hat{\sigma}_{b}\left(i \hat{\sigma}_{2}\right)
$$

Inversion symmetry:

Equal parity: $\quad P= \pm \hat{\tau}_{0} \otimes \hat{\sigma}_{0}$
Opposite parity: $\quad P=\hat{\tau}_{3} \otimes \hat{\sigma}_{0}$
Sublattice: $\quad P=\hat{\tau}_{1} \otimes \hat{\sigma}_{0}$

$[a, b]$	$\hat{\gamma}_{a}$	$\hat{\sigma}_{b}\left(i \sigma_{2}\right)$	Matrix	\mathbf{k}	EP
$[0,0]$	S	A	A	E	E
$[0,1]$	S	S	S	O	O
$[0,2]$	S	S	S	O	O
$[0,3]$	S	S	S	O	O
$[1,0]$	S	A	A	E	E
$[1,1]$	S	S	S	O	O
$[1,2]$	S	S	S	O	O
$[1,3]$	S	S	S	O	O
$[2,0]$	A	A	S	O	O
$[2,1]$	A	S	A	E	E
$[2,2]$	A	S	A	E	E
$[2,3]$	A	S	A	E	E
$[3,0]$	S	A	A	E	E
$[3,1]$	S	S	S	O	O
$[3,2]$	S	S	S	O	O
$[3,3]$	S	S	S	O	O

The basic symmetries of the order parameter

Annica's Lecture:

$$
\hat{\Delta}(\mathbf{k})=-\hat{\Delta}^{T}(-\mathbf{k})
$$

If the matrix is anti-symmetric: k-even If the matrix is symmetric: \mathbf{k}-odd

$$
\hat{\Delta}(\mathbf{k})=\sum_{a b} d_{a b}(\mathbf{k}) \hat{\tau}_{a} \otimes \hat{\sigma}_{b}\left(i \hat{\sigma}_{2}\right)
$$

Inversion symmetry:
Equal parity: $\quad P= \pm \hat{\tau}_{0} \otimes \hat{\sigma}_{0}$
Opposite parity: $\quad P=\hat{\tau}_{3} \otimes \hat{\sigma}_{0}$
Sublattice: $\quad P=\hat{\tau}_{1} \otimes \hat{\sigma}_{0}$

\square						
[a,b]	$\hat{\tau}_{a}$	$\hat{\sigma}_{b}\left(i \sigma_{2}\right)$	Matrix	k	EP	OP
[0, 0]	S	A	A	E	E	E
[0,1]	S	S	S	0	O	O
[0,2]	S	S	S	0	0	O
[0,3$]$	S	S	S	0	O	O
[1, 0]	S	A	A	E	E	0
[1, 1]	S	S	S	0	O	E
[1,2]	S	S	S	0	O	E
[1,3]	S	S	S	0	O	E
[2, 0]	A	A	S	0	O	E
[2, 1]	A	S	A	E	E	O
[2, 2]	A	S	A	E	E	O
[2,3]	A	S	A	E	E	0
[3, 0]	S	A	A	E	E	E
[3,1]	S	S	S	0	O	O
[3,2]	S	S	S	0	0	O
[3, 3]	S	S	S	O	O	O

The basic symmetries of the order parameter

Annica's Lecture:

$$
\hat{\Delta}(\mathbf{k})=-\hat{\Delta}^{T}(-\mathbf{k})
$$

If the matrix is anti-symmetric: k-even If the matrix is symmetric: \mathbf{k}-odd

$$
\hat{\Delta}(\mathbf{k})=\sum_{a b} d_{a b}(\mathbf{k}) \hat{\tau}_{a} \otimes \hat{\sigma}_{b}\left(i \hat{\sigma}_{2}\right)
$$

Inversion symmetry:
Equal parity: $\quad P= \pm \hat{\tau}_{0} \otimes \hat{\sigma}_{0}$
Opposite parity: $\quad P=\hat{\tau}_{3} \otimes \hat{\sigma}_{0}$
Sublattice: $\quad P=\hat{\tau}_{1} \otimes \hat{\sigma}_{0}$

$[a, b]$	$\hat{\tau}_{a}$	$\hat{\sigma}_{b}\left(i \sigma_{2}\right)$	Matrix	\mathbf{k}	EP	OP	SL
$[0,0]$	S	A	A	E	E	E	E
$[0,1]$	S	S	S	O	O	O	O
$[0,2]$	S	S	S	O	O	O	O
$[0,3]$	S	S	S	O	O	O	O
$[1,0]$	S	A	A	E	E	O	E
$[1,1]$	S	S	S	O	O	E	O
$[1,2]$	S	S	S	O	O	E	O
$[1,3]$	S	S	S	O	O	E	O
$[2,0]$	A	A	S	O	O	E	E
$[2,1]$	A	S	A	E	E	O	O
$[2,2]$	A	S	A	E	E	O	O
$[2,3]$	A	S	A	E	E	O	O
$[3,0]$	S	A	A	E	E	E	O
$[3,1]$	S	S	S	O	O	O	E
$[3,2]$	S	S	S	O	O	O	E
$[3,3]$	S	S	S	O	O	O	E

Considering multiple internal DOF (orbitals)

$$
\hat{\Delta}(\mathbf{k})=\sum_{a b} d_{a b}(\mathbf{k}) \hat{\tau}_{a} \otimes \hat{\sigma}_{b}\left(i \hat{\sigma}_{2}\right)
$$

Singlet/triplet are not directly associated with even/odd k or with even/odd parity!

$[a, b]$	$\hat{\tau}_{a}$	$\hat{\sigma}_{b}\left(i \sigma_{2}\right)$	Matrix	\mathbf{k}	EP	OP	SL
$[0,0]$	S	A	A	E	E	E	E
$[0,1]$	S	S	S	O	O	O	O
$[0,2]$	S	S	S	O	O	O	O
$[0,3]$	S	S	S	O	O	O	O
$[1,0]$	S	A	A	E	E	O	E
$[1,1]$	S	S	S	O	O	E	O
$[1,2]$	S	S	S	O	O	E	O
$[1,3]$	S	S	S	O	O	E	O
$[2,0]$	A	A	S	O	O	E	E
$[2,1]$	A	S	A	E	E	O	O
$[2,2]$	A	S	A	E	E	O	O
$[2,3]$	A	S	A	E	E	O	O
$[3,0]$	S	A	A	E	E	E	O
$[3,1]$	S	S	S	O	O	O	E
$[3,2]$	S	S	S	O	O	O	E
$[3,3]$	S	S	S	O	O	O	E

Considering multiple internal DOF (orbitals)

$$
\hat{\Delta}(\mathbf{k})=\sum_{a b} d_{a b}(\mathbf{k}) \hat{\tau}_{a} \otimes \hat{\sigma}_{b}\left(i \hat{\sigma}_{2}\right)
$$

Spin Singlet [b=0]

Singlet/triplet are not directly associated with even/odd k or with even/odd parity!

$[a, b]$	$\hat{\tau}_{a}$	$\hat{\sigma}_{b}\left(i \sigma_{2}\right)$	Matrix	\mathbf{k}	EP	OP	SL
$[0,0]$	S	A	A	E	E	E	E
$[0,1]$	S	S	S	O	O	O	O
$[0,2]$	S	S	S	O	O	O	O
$[0,3]$	S	S	S	O	O	O	O
$[1,0]$	S	A	A	E	E	O	E
$[1,1]$	S	S	S	O	O	E	O
$[1,2]$	S	S	S	O	O	E	O
$[1,3]$	S	S	S	O	O	E	O
$[2,0]$	A	A	S	O	O	E	E
$[2,1]$	A	S	A	E	E	O	O
$[2,2]$	A	S	A	E	E	O	O
$[2,3]$	A	S	A	E	E	O	O
$[3,0]$	S	A	A	E	E	E	O
$[3,1]$	S	S	S	O	O	O	E
$[3,2]$	S	S	S	O	O	O	E
$[3,3]$	S	S	S	O	O	O	E

Considering multiple internal DOF (orbitals)

$$
\hat{\Delta}(\mathbf{k})=\sum_{a b} d_{a b}(\mathbf{k}) \hat{\tau}_{a} \otimes \hat{\sigma}_{b}\left(i \hat{\sigma}_{2}\right)
$$

Spin Singlet [b=0]

Spin Triplet [b=1,2,3]

Singlet/triplet are not directly associated with even/odd k or with even/odd parity!

$[a, b]$	$\hat{\tau}_{a}$	$\hat{\sigma}_{b}\left(i \sigma_{2}\right)$	Matrix	k	EP	OP	SL
[0, 0]	S	A	A	E	E	E	E
[0,1]	S	S	S	\bigcirc	O	O	O
[0, 2]	S	S	S	\bigcirc	O	O	O
[0,3]	S	S	S	\bigcirc	O	-	O
[1,0]	S	A	A	E	E	O	E
[1,1]	S	S	S	\bigcirc	\bigcirc	E	0
[1,2]	S	S	S	\bigcirc	O	E	0
[1,3]	S	S	S	O	O	E	O
[2, 0]	A	A	S	O	O	E	E
[2, 1]	A	S	A	E	E	O	O
[2, 2]	A	S	A	E	E	O	O
[2,3]	A	S	A	E	E	O	O
[3, 0]	S	A	A	E	E	E	O
[3,1]	S	S	S	O	O	O	E
[3, 2]	S	S	S	\bigcirc	O	O	E
[3, 3]	S	S	S	O	O	O	E

Considering multiple internal DOF (orbitals)

$$
\hat{\Delta}(\mathbf{k})=\sum_{a b} d_{a b}(\mathbf{k}) \hat{\tau}_{a} \otimes \hat{\sigma}_{b}\left(i \hat{\sigma}_{2}\right)
$$

Spin Singlet [b=0]

$$
\text { Spin Triplet }[b=1,2,3]
$$

k-dependence does not uniquely define the parity of the SC order parameter!

Singlet/triplet are not directly associated with even/odd k or with even/odd parity!

Some examples of nontrivial phenomenology

Superconductivity in Complex Quantum Materials

$$
\begin{aligned}
\hat{\Delta}(\mathbf{k})=-\hat{\Delta}^{T}(-\mathbf{k}) \xrightarrow[\text { Only spin }]{ } & \hat{\Delta}(\mathbf{k})=d_{a}(\mathbf{k}) \hat{\sigma}_{a}\left(i \hat{\sigma}_{2}\right) \\
& \hat{\Delta}(\mathbf{k})=d_{a b}(\mathbf{k}) \hat{\tau}_{a} \otimes \hat{\sigma}_{b}\left(i \hat{\sigma}_{2}\right)
\end{aligned}
$$

Superconductivity in Complex Quantum Materials

$$
\hat{\Delta}(\mathbf{k})=-\hat{\Delta}^{T}(-\mathbf{k}) \longrightarrow \quad \hat{\text { onlyspin }} \hat{\Delta}(\mathbf{k})=d_{a}(\mathbf{k}) \hat{\sigma}_{a}\left(i \hat{\sigma}_{2}\right)
$$

$$
\longrightarrow \hat{\Delta}(\mathbf{k})=d_{a b}(\mathbf{k}) \hat{\tau}_{a} \otimes \hat{\sigma}_{b}\left(i \hat{\sigma}_{2}\right)
$$

Orbital/Layer/Sublattice+Spin Can transform non-trivially under inversion!

The case of $\mathrm{CeRh}_{2} \mathrm{As}_{2}$
Sublattice structure

$$
P=\hat{\tau}_{1}
$$

$$
\hat{\Delta}(\mathbf{k})=d_{33}(\mathbf{k}) \hat{\tau}_{3} \otimes \hat{\sigma}_{3}\left(i \hat{\sigma}_{2}\right)
$$ intra-layer, spin-triplet

Two superconducting phases!

Superconductivity in Complex Quantum Materials

$$
\begin{aligned}
\hat{\Delta}(\mathbf{k})=-\hat{\Delta}^{T}(-\mathbf{k}) & \left.\begin{array}{l}
\text { onlyspin } \\
\\
\\
\end{array} \begin{array}{l}
\hat{\Delta}(\mathbf{k})=d_{a}(\mathbf{k}) \hat{\sigma}_{a}\left(i \hat{\sigma}_{2}\right) \\
\\
\\
\end{array} \mathbf{k}\right)=d_{a b}(\mathbf{k}) \hat{\tau}_{a} \otimes \hat{\sigma}_{b}\left(i \hat{\sigma}_{2}\right)
\end{aligned}
$$

The case of $\mathrm{CeRh}_{2} \mathrm{As}_{2}$
Sublattice structure

$$
P=\hat{\tau}_{1}
$$

$\hat{\Delta}(\mathbf{k})=d_{33}(\mathbf{k}) \hat{\tau}_{3} \otimes \hat{\sigma}_{3}\left(i \hat{\sigma}_{2}\right)$
Even-parity, k-odd, intra-layer, spin-triplet

Two superconducting phases!

The case of $\mathrm{d}-\mathrm{Bi}_{2} \mathrm{Se}_{3}$
Even- and odd-P orbitals

$$
P=\hat{\tau}_{3}
$$

$$
\hat{\Delta}(\mathbf{k})=d_{0} \hat{\tau}_{1} \otimes \hat{\sigma}_{0}\left(i \hat{\sigma}_{2}\right)
$$

Odd-parity, s-wave, inter-orbital, spin-singlet

Generalized Anderson's Theorem

Superconductivity in Complex Quantum Materials

$$
\begin{aligned}
\hat{\Delta}(\mathbf{k})=-\hat{\Delta}^{T}(-\mathbf{k}) & \left.\begin{array}{l}
\text { onlyspin } \\
\\
\\
\end{array} \begin{array}{l}
\hat{\Delta}(\mathbf{k})=d_{a}(\mathbf{k}) \hat{\sigma}_{a}\left(i \hat{\sigma}_{2}\right) \\
\\
\\
\end{array} \mathbf{k}\right)=d_{a b}(\mathbf{k}) \hat{\tau}_{a} \otimes \hat{\sigma}_{b}\left(i \hat{\sigma}_{2}\right)
\end{aligned}
$$

The case of $\mathrm{CeRh}_{2} \mathrm{As}_{2}$
Sublattice structure

$$
P=\hat{\tau}_{1}
$$

$\hat{\Delta}(\mathbf{k})=d_{33}(\mathbf{k}) \hat{\tau}_{3} \otimes \hat{\sigma}_{3}\left(i \hat{\sigma}_{2}\right)$
Even-parity, k-odd, intra-layer, spin-triplet

Two superconducting phases!

The case of $\mathrm{d}-\mathrm{Bi}_{2} \mathrm{Se}_{3}$ Even- and odd-P orbitals

$$
P=\hat{\tau}_{3}
$$

$$
\hat{\Delta}(\mathbf{k})=d_{0} \hat{\tau}_{1} \otimes \hat{\sigma}_{0}\left(i \hat{\sigma}_{2}\right)
$$

Odd-parity, s-wave, inter-orbital, spin-singlet

Generalized Anderson's Theorem

The case of $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$ 3 orbitals

$$
[6,3]+i[5,3]
$$

Chiral d-wave superconductivity [Orbital antisymmetric spin-triplet]

Chiral d-wave in 2D FS!

Three orbitals with same parity: $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$

$3 t_{2 g}$ orbitals/3 bands system

Three orbitals with same parity: $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$

$3 \mathrm{t}_{2 g}$ orbitals/3 bands system

© Felix Baumberger

Three orbitals with same parity: $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$

$3 \mathrm{t}_{2 \mathrm{~g}}$ orbitals/3 bands system

(C) Felix Baumberger

SC states [Even-parity sector]

Irrep	$[a, b]$	Orbital	Spin
$A_{1 g}$	$[0,0]$	symmetric	singlet
	$[8,0]$	symmetric	singlet
	$[4,3]$	antisymmetric	triplet
	$[5,2]-[6,1]$	antisymmetric	triplet
$A_{2 g}$	$[5,1]+[6,2]$	antisymmetric	triplet
$B_{1 g}$	$[7,0]$	symmetric	singlet
	$[5,2]+[6,1]$	antisymmetric	triplet
$B_{2 g}$	$[1,0]$	symmetric	singlet
	$[5,1]-[6,2]$	antisymmetric	triplet
	$\{[3,0],-[2,0]\}$	symmetric	singlet
	$\{[4,2],-[4,1]\}$	antisymmetric	triplet
	$\{[5,3],[6,3]\}$	antisymmetric	triplet

Microscopic basis: E-parity/S-Triplet
Band basis: pseudospin-S

Three orbitals with same parity: $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$

$3 \mathrm{t}_{2 g}$ orbitals/3 bands system

© Felix Baumberger

SC states [Even-parity sector]
Phase diagram [atomic x k-dependent SOC]

Irrep	$[a, b]$	Orbital	Spin
$A_{1 g}$	$[0,0]$	symmetric	singlet
	$[8,0]$	symmetric	singlet
	$[4,3]$	antisymmetric	triplet
	$[5,2]-[6,1]$	antisymmetric	triplet
$A_{2 g}$	$[5,1]+[6,2]$	antisymmetric	triplet
$B_{1 g}$	$[7,0]$	symmetric	singlet
	$[5,2]+[6,1]$	antisymmetric	triplet
$B_{2 g}$	$[1,0]$	symmetric	singlet
	$[5,1]-[6,2]$	antisymmetric	triplet
	$\{[3,0],-[2,0]\}$	symmetric	singlet
	$\{[4,2],-[4,1]\}$	antisymmetric	triplet
	$\{[5,3],[6,3]\}$	antisymmetric	triplet

Microscopic basis: E-parity/S-Triplet Band basis: pseudospin-S

Hund's interaction [inter-orbital]

Three orbitals with same parity: $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$

$3 \mathrm{t}_{2 g}$ orbitals/3 bands system

© Felix Baumberger

SC states [Even-parity sector]
Phase diagram [atomic x k-dependent SOC]

Irrep	$[a, b]$	Orbital	Spin
$A_{1 g}$	$[0,0]$	symmetric	singlet
	$[8,0]$	symmetric	singlet
	$[4,3]$	antisymmetric	triplet
	$[5,2]-[6,1]$	antisymmetric	triplet
$A_{2 g}$	$[5,1]+[6,2]$	antisymmetric	triplet
$B_{1 g}$	$[7,0]$	symmetric	singlet
	$[5,2]+[6,1]$	antisymmetric	triplet
$B_{2 g}$	$[1,0]$	symmetric	singlet
	$[5,1]-[6,2]$	antisymmetric	triplet
	$\{[3,0],-[2,0]\}$	symmetric	singlet
	$\{[4,2],-[4,1]\}$	antisymmetric	triplet
	$\{[5,3],[6,3]\}$	antisymmetric	triplet

Microscopic basis: E-parity/S-Triplet Band basis: pseudospin-S

Hund's interaction [inter-orbital]

Three orbitals with same parity: $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$

$3 \mathrm{t}_{2 g}$ orbitals/3 bands system

© Felix Baumberger

SC states [Even-parity sector]

Irrep	$[a, b]$	Orbital	Spin
$A_{1 g}$	$[0,0]$	symmetric	singlet
	$[8,0]$	symmetric	singlet
	$[4,3]$	antisymmetric	triplet
	$[5,2]-[6,1]$	antisymmetric	triplet
$A_{2 g}$	$[5,1]+[6,2]$	antisymmetric	triplet
	$[7,0]$	symmetric	singlet
	$[5,2]+[6,1]$	antisymmetric	triplet
$B_{2 g}$	$[1,0]$	symmetric	singlet
	$[5,1]-[6,2]$	antisymmetric	triplet
	$\{[3,0],-[2,0]\}$	symmetric	singlet
	$\{[4,2],-[4,1]\}$	antisymmetric	triplet
	$\{[5,3],[6,3]\}$	antisymmetric	triplet

Microscopic basis: E-parity/S-Triplet Band basis: pseudospin-S

Phase diagram [atomic x k-dependent SOC]

Hund's interaction [inter-orbital]

- Uncovered mechanism for chiral d-wave!
- Engineering the normal state to enhance T_{c} !

Two-orbitals with opposite parity: $\mathrm{d}-\mathrm{Bi}_{2} \mathrm{Se}_{3}$

Pz-like orbitals in a quintuple layer

Two-orbitals with opposite parity: $\mathrm{d}-\mathrm{Bi}_{2} \mathrm{Se}_{3}$

Pz-like orbitals in a quintuple layer
K-independent sector

Irrep	Spin	Orbital	Parity	Matrix Form
$A_{1 g}$	Singlet	Trivial	Even	$\hat{\tau}_{0} \otimes \hat{\sigma}_{0}\left(i \hat{\sigma}_{2}\right)$
$A_{1 u}$	Triplet	Singlet	Odd	$\hat{\tau}_{2} \otimes \hat{\sigma}_{3}\left(i \hat{\sigma}_{2}\right)$
$A_{2 u}$	Singlet	Triplet	Odd	$\hat{\tau}_{1} \otimes \hat{\sigma}_{0}\left(i \hat{\sigma}_{2}\right)$
E_{u}	Triplet	Singlet	Odd	$i \hat{\tau}_{2} \otimes \hat{\sigma}_{1}\left(i \hat{\sigma}_{2}\right)$

Odd parity \Rightarrow Nodes!
[Sensitive to disorder]

Two-orbitals with opposite parity: $\mathrm{d}-\mathrm{Bi}_{2} \mathrm{Se}_{3}$

Pz-like orbitals in a quintuple layer
$\mathrm{Cu}_{\mathrm{x}} / \mathrm{Nb}_{\mathrm{x}} / \mathrm{Sr}_{\mathrm{x}}(\mathrm{PbSe})_{\mathrm{x}}$

K-independent sector

Irrep	Spin	Orbital	Parity	Matrix Form
$A_{1 g}$	Singlet	Trivial	Even	$\hat{\tau}_{0} \otimes \hat{\sigma}_{0}\left(i \hat{\sigma}_{2}\right)$
			$\hat{\tau}_{3} \otimes \hat{\sigma}_{0}\left(i \hat{\sigma}_{2}\right)$	
$A_{1 u}$	Triplet	Singlet	Odd	$\hat{\tau}_{2} \otimes \hat{\sigma}_{3}\left(i \hat{\sigma}_{2}\right)$
$A_{2 u}$	Singlet	Triplet	Odd	$\hat{\tau}_{1} \otimes \hat{\sigma}_{0}\left(i \hat{\sigma}_{2}\right)$
E_{u}	Triplet	Singlet	Odd	$i \hat{\tau}_{2} \otimes \hat{\sigma}_{1}\left(i \hat{\sigma}_{2}\right)$

Odd parity \Rightarrow Nodes! [Sensitive to disorder]

Experiment/Theory

M. P. Smylie et al., PRB 96, 115145 (2017)

Two-orbitals with opposite parity: $\mathrm{d}-\mathrm{Bi}_{2} \mathrm{Se}_{3}$

Pz-like orbitals in a quintuple layer

K-independent sector

Irrep	Spin	Orbital	Parity	Matrix Form
$A_{1 g}$	Singlet	Trivial	Even	$\hat{\tau}_{0} \otimes \hat{\sigma}_{0}\left(i \hat{\sigma}_{2}\right)$
		$\hat{\tau}_{3} \otimes \hat{\sigma}_{0}\left(i \hat{\sigma}_{2}\right)$		
	Triplet	Singlet	Odd	$\hat{\tau}_{2} \otimes \hat{\sigma}_{3}\left(i \hat{\sigma}_{2}\right)$
$A_{2 u}$	Singlet	Triplet	Odd	$\hat{\tau}_{1} \otimes \hat{\sigma}_{0}\left(i \hat{\sigma}_{2}\right)$
E_{u}	Triplet	Singlet	Odd	$i \hat{\tau}_{2} \otimes \hat{\sigma}_{1}\left(i \hat{\sigma}_{2}\right)$

Odd parity \Rightarrow Nodes! [Sensitive to disorder]

"Generalised Anderson’s Theorem"

Experiment/Theory

M. P. Smylie et al., PRB 96, 115145 (2017)

L. Andersen*, A. Ramires* et al., Sci. Adv. 6, eaay6502 (2020)
B. Zinkl and A. Ramires, Phys. Rev. B 106, 014515 (2022)

Two sublattices/layers: CeRh2As2

Cartoon picture:

Two sublattices/layers: CeRh2As2

Cartoon picture:

Trivial pairing + Twist = Odd parity SC

w.r.t. an extra internal DOF [SL/layers/orbitals/...]

Two sublattices/layers: CeRh2As2

Cartoon picture:

Trivial pairing + Twist = Odd parity SC

w.r.t. an extra internal DOF

 [SL/layers/orbitals/...]M. Sigrist et al., J. Phys. Soc. Jpn. 83, 061014 (2014)
T. Yoshida et al., Phys. Rev. B 86, 134514 (2012)
D. Maruyama et al., J. Phys. Soc. Jpn. 81, 034702 (2012)
D. Möckli and A. Ramires, Phys. Rev. Research 3, 023204 (2021)
D. Möckli and A. Ramires, Phys. Rev. B 104, 134517 (2021)

Successfully fits the HxT phase diagram

Khim et al., Science 373, 1012 (2021)
Successfully addresses the magnetic field anisotropy

Landaeta et al., PRX 12, 031001 (2022)

Some common themes...

Some common themes...

- Phase diagrams with multiple SC phases are rare!
- Only observed in other two HF materials!
- Indication of unconventional SC state!

Some common themes...

- Phase diagrams with multiple SC phases are rare!
- Only observed in other two HF materials!
- Indication of unconventional SC state!
- Common theme: sublattice DOF?!
T. Hazra et al., Phys. Rev. Lett. 130, 136002 (2023)

Nonsymmorphic
$1 / \mathrm{mmm}$

Body-centered

Bibliography [group theory \& superconductivity]

Phenomenological Theory of Unconventional Superconductivity
Manfred Sigrist and Kazuo Ueda
Rev. Mod. Phys 63, 239 (1991)

Symmetry aspects of Chiral Superconductors
Aline Ramires
Contemporary Physics 63(2), 71 (2022)

Nonunitary Superconductivity in Complex Quantum Materials Aline Ramires
J. Phys.: Condens. Matter 34 304001(2022)

Still mystery after all these years -- Unconventional SC of $\mathbf{S r}_{2} \mathbf{R u O}_{4}$
Yoshiteru Maeno, Shingo Yonezawa, Aline Ramires arXiv:2402.12117 [Invited review to appear in JPSJ]

Have we covered everything?
 Is the Sigrist-Ueda classification "complete"?

[Generalizations]

I) Multiple internal DOF
II) Nonsymmorphic systems [Space group]

Crystallographic Space Groups in 3D

A general space-group operation can be written as [Seitz notation]:

Crystallographic Space Groups in 3D

A general space-group operation can be written as [Seitz notation]:

Examples:

$\{E \mid 0\}$ Identity
$\{G \mid 0\}$ Pure point operation
$\{E \mid \mathbf{t}\} \quad$ Pure translation

Crystallographic Space Groups in 3D

A general space-group operation can be written as [Seitz notation]:

Examples:

$\{E \mid 0\} \quad$ Identity
$\{G \mid 0\} \quad$ Pure point operation
$\{E \mid t\} \quad$ Pure translation

Action on coordinates:

$$
\{G \mid t\} \mathbf{r}=D_{3 D}(G) \mathbf{r}+\mathbf{t}
$$

Crystallographic Space Groups in 3D

A general space-group operation can be written as [Seitz notation]:

Examples:

$\{E \mid 0\} \quad$ Identity
$\{G \mid 0\}$ Pure point operation
$\{E \mid \mathbf{t}\} \quad$ Pure translation

Action on coordinates:

$$
\{G \mid t\} \mathbf{r}=D_{3 D}(G) \mathbf{r}+\mathbf{t}
$$

Composition:

$$
\left\{G_{1} \mid t_{1}\right\}\left\{G_{2} \mid t_{2}\right\}=\left\{G_{1} \cdot G_{2} \mid G_{1} t_{2}+t_{1}\right\}
$$

Crystallographic Space Groups in 3D

[There are 230 space groups in 3D]

№	Crystal system, (count), Bravais lattice	Point group					Space groups (international short symbol)
		Int'I	Schön.	Orbifold	Cox.	Ord.	
1	Triclinic (2)	1	C_{1}	11	[${ }^{+}$	1	P1
2	$\frac{\sqrt{\alpha_{b}} b^{6}}{}$	1	C_{i}	1×	$\left[2^{+}, 2^{+}\right]$	2	P ${ }^{-1}$
3-5	Monoclinic (13)	2	C_{2}	22	[2] ${ }^{+}$	2	$\begin{aligned} & \mathrm{P} 2, \mathrm{P}_{1} \\ & \mathrm{C} 2 \end{aligned}$
6-9		m	Cs	*11	[]	2	$\begin{aligned} & \text { Pm, Pc } \\ & \mathrm{Cm}, \mathrm{Cc} \end{aligned}$
10-15		2/m	$\mathrm{C}_{2} \mathrm{~h}$	2*	[2, ${ }^{+}$]	4	$\mathrm{P} 2 / \mathrm{m}, \mathrm{P}_{1} / \mathrm{m}$ $\mathrm{C} 2 / \mathrm{m}, \mathrm{P} 2 / \mathrm{c}, \mathrm{P}_{1} / \mathrm{c}$ C2/c
16-24	Orthorhombic (59)	222	D_{2}	222	$[2,2]^{+}$	4	$\begin{aligned} & \mathrm{P} 222, \mathrm{P} 222_{1}, \mathrm{P} 2_{1} 2_{1} 2, \mathrm{P} 2_{1} 2_{1} 2_{1}, \mathrm{C} 222_{1}, \\ & \mathrm{C} 222, \mathrm{~F} 222, \mathrm{I} 222,1 \mathrm{I}_{1} 2_{1} 2_{1} \end{aligned}$
25-46		mm2	$\mathrm{C}_{2 \mathrm{v}}$	*22	[2]	4	Pmm2, Pmc2 $1_{1}, \mathrm{Pcc} 2, \mathrm{Pma} 2, \mathrm{Pca}_{1}$, Pnc2, Pmn2 ${ }_{1}, \mathrm{Pba} 2, \mathrm{Pna} 1_{1}, \mathrm{Pnn2}$ Cmm2, Cmc_{2}, Ccc 2, Amm2, Aem2, Ama2, Aea2 Fmm2, Fdd2 Imm2, Iba2, Ima2
47-74		mmm	$\mathrm{D}_{2} \mathrm{~h}$	*222	[2,2]	8	Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma Cmcm, Cmce, Cmmm, Cccm, Cmme, Ccce Fmmm, Fddd Immm, Ibam, Ibca, Imma

Continues with tetragonal, trigonal, hexagonal and cubic...

A general space-group operation can be written as [Seitz notation]:

Examples:

$\{E \mid \mathbf{0}\}$ Identity
$\{G \mid 0\}$ Pure point operation
$\{E \mid \mathbf{t}\} \quad$ Pure translation
Action on coordinates:

$$
\{G \mid t\} \mathbf{r}=D_{3 D}(G) \mathbf{r}+\mathbf{t}
$$

Composition:

$$
\left\{G_{1} \mid t_{1}\right\}\left\{G_{2} \mid t_{2}\right\}=\left\{G_{1} \cdot G_{2} \mid G_{1} t_{2}+t_{1}\right\}
$$

Crystallographic Space Groups in 3D

[There are 230 space groups in 3D]

№	Crystal system, (count), Bravais lattice	Point group					Space groups (international short symbol)
		Int'I	Schön.	Orbifold	Cox.	Ord.	
1	Triclinic (2)	1	C_{1}	11	[${ }^{+}$	1	P1
2	$\frac{x_{0}}{L_{b}}$	$\overline{1}$	C_{i}	1×	[${ }^{+}$, 2^{+}]	2	P ${ }^{1}$
3-5	Monoclinic (13)	2	C_{2}	22	[2] ${ }^{+}$	2	$\begin{aligned} & \mathrm{P} 2, \mathrm{P}_{1} \\ & \mathrm{C} 2 \end{aligned}$
6-9		m	C_{s}	*11	[]	2	$\begin{aligned} & \mathrm{Pm}, \mathrm{Pc} \\ & \mathrm{Cm}, \mathrm{Cc} \end{aligned}$
10-15		2/m	$\mathrm{C}_{2 \mathrm{~h}}$	2*	[2,2+]	4	$\mathrm{P} 2 / \mathrm{m}, \mathrm{P}_{1} / \mathrm{m}$ $\mathrm{C} 2 / \mathrm{m}, \mathrm{P} 2 / \mathrm{c}, \mathrm{P}_{1} / \mathrm{c}$ C2/c
16-24	Orthorhombic (59)	222	D_{2}	222	$[2,2]^{+}$	4	$\mathrm{P} 222, \mathrm{P} 222^{1}, \mathrm{P} 2_{1} 2_{1} 2, \mathrm{P}_{1} 2_{1} 2_{1}, \mathrm{C} 222_{1},$ $\text { C222, F222, } 1222,12_{1} 2_{1} 2_{1}$
25-46		mm2	$\mathrm{C}_{2 \mathrm{v}}$	*22	[2]	4	Pmm2, Pmc2 $1_{1}, \mathrm{Pcc} 2, \mathrm{Pma2}, \mathrm{Pca2}_{1}$, Pnc2, Pmn2 ${ }_{1}, \mathrm{Pba} 2, \mathrm{Pna2}{ }_{1}, \mathrm{Pnn2}$ Cmm2, Cmc_{2}, Ccc 2 , Amm2, Aem2, Ama2, Aea2 Fmm2, Fdd2 Imm2, Iba2, Ima2
47-74		mmm	$\mathrm{D}_{2 \mathrm{~h}}$	*222	[2,2]	8	Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma Cmcm, Cmce, Cmmm, Cccm, Cmme, Ccce Fmmm, Fddd Immm, Ibam, Ibca, Imma

Continues with tetragonal, trigonal, hexagonal and cubic..

A general space-group operation can be written as [Seitz notation]:

Examples:

$\{E \mid \mathbf{0}\}$ Identity
$\{G \mid 0\}$ Pure point operation
$\{E \mid \mathbf{t}\} \quad$ Pure translation
Action on coordinates:

$$
\{G \mid t\} \mathbf{r}=D_{3 D}(G) \mathbf{r}+\mathbf{t}
$$

Composition:

$$
\left\{G_{1} \mid t_{1}\right\}\left\{G_{2} \mid t_{2}\right\}=\left\{G_{1} \cdot G_{2} \mid G_{1} t_{2}+t_{1}\right\}
$$

Compound space group operations (I)
 Glide Plane: $\left\{M \mid \mathbf{t}_{\|}\right\}$

Definition: A glide plane consists of a reflection followed by a (non-primitive) translation parallel to the plane of reflection.

1D Example

Compound space group operations (I)
 Glide Plane: $\left\{M \mid \mathbf{t}_{\|}\right\}$

Definition: A glide plane consists of a reflection followed by a (non-primitive) translation parallel to the plane of reflection.

1D Example

Compound space group operations (I)
 Glide Plane: $\left\{M \mid \mathbf{t}_{\|}\right\}$

Definition: A glide plane consists of a reflection followed by a (non-primitive) translation parallel to the plane of reflection.

1D Example

Compound space group operations (I)
 Glide Plane: $\left\{M \mid \mathbf{t}_{\|}\right\}$

Definition: A glide plane consists of a reflection followed by a (non-primitive) translation parallel to the plane of reflection.

1D Example

Compound space group operations (I)
 Glide Plane: $\left\{M \mid \mathbf{t}_{\|}\right\}$

Definition: A glide plane consists of a reflection followed by a (non-primitive) translation parallel to the plane of reflection.

1D Example

Compound space group operations (I)
 Glide Plane: $\left\{M \mid \mathbf{t}_{\|}\right\}$

Definition: A glide plane consists of a reflection followed by a (non-primitive) translation parallel to the plane of reflection.

1D Example

Compound space group operations (I) Glide Plane: $\left\{M \mid \mathbf{t}_{\|}\right\}$

Definition: A glide plane consists of a reflection followed by a (non-primitive) translation parallel to the plane of reflection.

1D Example

2D Example

Compound space group operations (II) Screw axis: $\left\{R \mid \mathbf{t}_{\|}\right\}$

Definition: A screw axis consists of a rotation followed by a (nonprimitive) translation along the axis of rotation.

Compound space group operations (II) Screw axis: $\left\{R \mid \mathbf{t}_{\|}\right\}$

Definition: A screw axis consists of a rotation followed by a (nonprimitive) translation along the axis of rotation.

3D Example: Elemental Te [helical chains]

[P3,21]

Compound space group operations (II) Screw axis: $\left\{R \mid \mathbf{t}_{\|}\right\}$

Definition: A screw axis consists of a rotation followed by a (nonprimitive) translation along the axis of rotation.

Elena's Lecture

3D Example: $\mathrm{CeRh}_{2} \mathrm{As}_{2}$
[P3,21]

[P4/nmm]

Jairo's Lecture

Altermagnetism: Example of RuO_{2}

[I, C2z, ...]

Jairo's Lecture

Altermagnetism: Example of RuO_{2}

(1/2)PLV
[P42/mnm]
Nonsymmorphic

Jairo's Lecture

Altermagnetism: Example of RuO_{2}

Nonsymmorphic Space groups

Consider a space group G with operations $\{G \mid \mathbf{t}\}$ which leave a given lattice invariant. We can rewrite each operation as:

$$
\{G \mid \mathbf{t}\}=\left\{G \mid \mathbf{T}_{P L V}+\tilde{\mathbf{t}}\right\}=\left\{E \mid \mathbf{T}_{P L V}\right\}\{G \mid \tilde{\mathbf{t}}\}
$$

Nonsymmorphic Space groups

Consider a space group G with operations $\{G \mid \mathbf{t}\}$ which leave a given lattice invariant. We can rewrite each operation as:

$$
\{G \mid \mathbf{t}\}=\left\{G \mid \mathbf{T}_{P L V}+\tilde{\mathbf{t}}\right\}=\left\{E \mid \mathbf{T}_{P L V}\right\}\{G \mid \tilde{\mathbf{t}}\}
$$

Definition:

If, by a suitable choice of origin we find that ALL elements of G have

$$
\tilde{\mathfrak{t}}=0
$$

the space group is called SYMMORPHIC

Nonsymmorphic Space groups

Consider a space group G with operations $\{G \mid \mathbf{t}\}$ which leave a given lattice invariant. We can rewrite each operation as:

$$
\{G \mid \mathbf{t}\}=\left\{G \mid \mathbf{T}_{P L V}+\tilde{\mathbf{t}}\right\}=\left\{E \mid \mathbf{T}_{P L V}\right\}\{G \mid \tilde{\mathbf{t}}\}
$$

Definition:

If, by a suitable choice of origin we find that ALL elements of G have

$$
\tilde{\mathbf{t}}=0
$$

the space group is called SYMMORPHIC

If, by ANY choice of origin we find that AT LEAST ONE of the elements of G have

$$
\tilde{\mathfrak{t}} \neq 0
$$

the space group is called NONSYMMORPHIC

"From Point Groups to Space Groups"

What happens to the irreps we found in the context of point groups?
\Rightarrow Need to take translations into account!

"From Point Groups to Space Groups"

What happens to the irreps we found in the context of point groups?
\Rightarrow Need to take translations into account!
Translations in 3D: three sets of (infinite) Abelian subgroups
\Rightarrow Infinite conjugacy classes $=$ Infinite irreps
\Rightarrow Bloch's functions are basis functions for the group of translations (labelled by momenta \mathbf{k})

"From Point Groups to Space Groups"

What happens to the irreps we found in the context of point groups?
\Rightarrow Need to take translations into account!

Translations in 3D: three sets of (infinite) Abelian subgroups
\Rightarrow Infinite conjugacy classes = Infinite irreps
\Rightarrow Bloch's functions are basis functions for the group of translations (labelled by momenta \mathbf{k})

Symmorphic groups: $\quad D_{k}^{\Gamma_{i}}\left(\left\{R_{\alpha} \mid \boldsymbol{R}_{n}\right\}\right)=\mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{R}_{n}} D^{\Gamma_{i}}\left(R_{\alpha}\right)$,

$$
\chi_{k}^{\Gamma_{i}}\left(\left\{R_{\alpha} \mid \boldsymbol{R}_{n}\right\}\right)=\mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{R}_{n}} \chi^{\Gamma_{i}}\left(R_{\alpha}\right) .
$$

"From Point Groups to Space Groups"

What happens to the irreps we found in the context of point groups?
\Rightarrow Need to take translations into account!
Translations in 3D: three sets of (infinite) Abelian subgroups
\Rightarrow Infinite conjugacy classes $=$ Infinite irreps
\Rightarrow Bloch's functions are basis functions for the group of translations (labelled by momenta \mathbf{k})

Symmorphic groups: $\quad D_{k}^{\Gamma_{i}}\left(\left\{R_{\alpha} \mid \boldsymbol{R}_{n}\right\}\right)=\mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{R}_{n}} D^{\Gamma_{i}}\left(R_{\alpha}\right)$,

$$
\chi_{k}^{\Gamma_{i}}\left(\left\{R_{\alpha} \mid \boldsymbol{R}_{n}\right\}\right)=\mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{R}_{n}} \chi^{\Gamma_{i}}\left(R_{\alpha}\right) .
$$

Nonsymmorphic groups: More complicated...but there are tables!

Nonsymmorphic symmetry Manifestation \#1: Symmetry-protected band crossings

s-states in a diamond lattice
[Fd-3m]

Hourglass fermions in KHgSb
[P63/mmc]

Nonsymmorphic symmetry Manifestation \#2: New OP connectivities in modulated systems

Band perspective

Cvektovik et al., Phys. Rev. B 88, 134510 (2013)

Nonsymmorphic symmetry Manifestation \#2: New OP connectivities in modulated systems

Band perspective

Fe-based SC [P4/nmm]

Cvektovik et al., Phys. Rev. B 88, 134510 (2013)

OP perspective

$\mathrm{CeRh}_{2} \mathrm{As}_{2}[\mathrm{P} 4 / \mathrm{nmm}]$
If a multi-component order parameter:

$$
F_{c}=\gamma M_{1} M_{2} P+\ldots
$$

$$
\begin{aligned}
& E_{1 / 2 m} \otimes E_{1 / 2 m}=A_{1 g} \oplus A_{2 u} \oplus B_{2 g} \oplus B_{1 u} \\
& E_{3 / 4 m} \otimes E_{3 / 4 m}=A_{1 g} \oplus A_{1 u} \oplus B_{2 u} \oplus B_{2 g}
\end{aligned}
$$

A. Ramires and A. Szabo, arXiv. 2309.05664 (2013)

Nonsymmorphic symmetry Manifestation \#2: New OP connectivities in modulated systems

Band perspective

Fe-based SC [P4/nmm]

Cvektovik et al., Phys. Rev. B 88, 134510 (2013)

OP perspective

$\mathrm{CeRh}_{2} \mathrm{As}_{2}[\mathrm{P} 4 / \mathrm{nmm}]$
If a multi-component order parameter:

$$
F_{c}=\gamma M_{1} M_{2} P+\ldots
$$

$$
\begin{aligned}
& E_{1 / 2 m} \otimes E_{1 / 2 m}=A_{1 g} \oplus A_{2 u} \oplus B_{2 g} \oplus B_{1 u} \\
& E_{3 / 4 m} \otimes E_{3 / 4 m}=A_{1 g} \oplus A_{1 u} \oplus B_{2 u} \oplus B_{2 g}
\end{aligned}
$$

A. Ramires and A. Szabo, arXiv. 2309.05664 (2013)

Nonsymmorphic symmetry Manifestation \#3: New nodes at the BZ edge

Blount's Theorem:

"there are no line nodes in odd-parity
superconductors in the presence of SOC"
E. I. Blount, Phys. Rev. B 32, 2935 (1985)

Nonsymmorphic symmetry Manifestation \#3: New nodes at the BZ edge

Blount's Theorem:
"there are no line nodes in odd-parity
superconductors in the presence of SOC"

E. I. Blount, Phys. Rev. B 32, 2935 (1985)
$\mathrm{UPt}_{3}\left[\mathrm{~Pb}_{3} / \mathrm{mmc}\right]$

M. R. Norman, PRB 52, 15093 (1995)

Nonsymmorphic symmetry Manifestation \#3: New nodes at the BZ edge

Blount's Theorem:
"there are no line nodes in odd-parity superconductors in the presence of SOC"
E. I. Blount, Phys. Rev. B 32, 2935 (1985)
$\mathrm{UPt}_{3}\left[\mathrm{~Pb}_{3} / \mathrm{mmc}\right]$

M. R. Norman, PRB 52, 15093 (1995)

FS in 3D BZ

FS in $k_{z}=\pi$ plane

In the SC state:
Line nodes!
Z. Wang et al., PRB 96, 174511 (2017)
S. Kobayashi et al., PRB 94, 134512 (2016)
T. Micklitz et al., PRL 118, 207001 (2017)
T. Micklitz et al., PRB 95, 024508 (2017)
S. Sumita Ph.D. Thesis (2019)

Summary/Conclusion

Brief introduction to group theory concepts:
Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation
\Rightarrow Character \Rightarrow Irreducible Representations
Crystallographic Point Groups:
\Rightarrow SC order parameter classification
\Rightarrow Conventional/unconventional
\Rightarrow Nematic/Chiral
Beyond the Sigrist-Ueda Classification:
\Rightarrow Multiple internal DOFs (orbitals/layers/sublattices)
\Rightarrow Nonsymmorphic symmetries
"Loopholes" to what we have thought were very well-established concepts and theorems in the field...are there more of them?

