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Brief introduction to group theory concepts: 
Group  Conjugacy Classes  Group Representation


                   Character  Irreducible Representations


Crystallographic Point Groups: 
 SC order parameter classification [Sigrist-Ueda]

 Conventional/unconventional

 Nematic/Chiral


Beyond the Sigrist-Ueda Classification: 
 Multiple internal DOFs (orbitals/layers/sublattices)

 Nonsymmorphic symmetries

⇒ ⇒
⇒ ⇒

⇒
⇒
⇒

⇒
⇒

Outline
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Additive Group of the Integers

Order of the group: number of elements in the group

[The additive group of the integers is infinite]

Group



Group of Symmetries of the Equilateral Triangle

Group



Group of Symmetries of the Equilateral Triangle

Order of the group: number of elements in the group

[The group of symmetries of the equilateral triangle has order 6]

Group



Convention: Clockwise rotations

Convention:  Apply first the right most operation.
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Group of Symmetries of the Equilateral Triangle

Homework!
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Multiplication Table

C3v point group 
[isomorphic to S3]

Group of Symmetries of the Equilateral Triangle

Homework!

Group
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Group of Symmetries of the Equilateral triangle

I) Identity:

E is not conjugate to any other element
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Group of Symmetries of the Equilateral triangle

I) Identity:

E is not conjugate to any other element

II) Rotations:

Rotations are conjugate to each other

Group



Conjugate Elements

Group of Symmetries of the Equilateral triangle

III) Reflections:

Reflections are conjugate among themselves

I) Identity:

E is not conjugate to any other element

II) Rotations:

Rotations are conjugate to each other

Group
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Conjugacy Classes

Order of an element: the number 
of times the element needs to be 
applied to be equal to the identity.

Group  Conjugacy Classes⇒



Conjugacy Classes

Order of an element: the number 
of times the element needs to be 
applied to be equal to the identity.

(G1)N = (G . G2 . G−1)N = (G . G2 . G−1) . (G . G2 . G−1) . (G . G2 . G−1) . . . (G . G2 . G−1)
(G1)N = 1 ⇒ (G . (G2)N . G−1) = 1 ⇒ (G2)N = 1
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Conjugacy Classes

Order of an element: the number 
of times the element needs to be 
applied to be equal to the identity.

Always the case for the identity!

(G1)N = (G . G2 . G−1)N = (G . G2 . G−1) . (G . G2 . G−1) . (G . G2 . G−1) . . . (G . G2 . G−1)
(G1)N = 1 ⇒ (G . (G2)N . G−1) = 1 ⇒ (G2)N = 1

1 element/order 1

2 elements/order 3

3 elements/order 2
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Conjugacy Classes

Order of an element: the number 
of times the element needs to be 
applied to be equal to the identity.

Always the case for the identity!

(G1)N = (G . G2 . G−1)N = (G . G2 . G−1) . (G . G2 . G−1) . (G . G2 . G−1) . . . (G . G2 . G−1)
(G1)N = 1 ⇒ (G . (G2)N . G−1) = 1 ⇒ (G2)N = 1

1 element/order 1

2 elements/order 3

3 elements/order 2
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Group Representation

Trivial representation:  

associate the identity matrix (number one) to all elements of the group
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Group Representation

Trivial representation:  

associate the identity matrix (number one) to all elements of the group

Ok, but what about non-
trivial representations?

Group  Conjugacy Classes  Group Representation⇒ ⇒



Group Representation

Group of Symmetries of the Equilateral triangle

Thinking of transformations acting on the coordinates (x,y,z):

x

y
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Group Representation

Group of Symmetries of the Equilateral triangle

Thinking of transformations acting on the coordinates (x,y,z):

x

y

You can check if matrices reproduce 
the structure of the group
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Group Representation

Dimension of the representation: the dimension of the space on which it acts

Group of Symmetries of the Equilateral triangle

Thinking of transformations acting on the coordinates (x,y,z):

x

y

You can check if matrices reproduce 
the structure of the group
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Group Representation

Dimension of the representation: the dimension of the space on which it acts

Group of Symmetries of the Equilateral triangle

Thinking of transformations acting on the coordinates (x,y,z):

Generators of the group: the minimal set of operations out of 
which the entire group can be derived [not unique]

x

y

You can check if matrices reproduce 
the structure of the group

Group  Conjugacy Classes  Group Representation⇒ ⇒



Group Representation

Group of Symmetries of the Equilateral triangle

Thinking of transformations acting on the coordinates (x,y,z):

Note: The z-component never mix with the x- and y-components. This 
means we can divide the space in {x,y} and {z} and treat them 

independently. In this case we say the representation is reducible.

Group  Conjugacy Classes  Group Representation⇒ ⇒



Group Representation

Group of Symmetries of the Equilateral triangle

Thinking of transformations acting on the coordinates (x,y,z):

[Trivial representation]

One-dimensional  
irreducible representation

Two-dimensional  
irreducible representation

Group  Conjugacy Classes  Group Representation⇒ ⇒



Group Representation

Group of Symmetries of the Equilateral triangle

Question: How can we know that we have 
identified all the representations?

One-dimensional [trivial] 
irreducible representation

Two-dimensional  
irreducible representation

Group  Conjugacy Classes  Group Representation⇒ ⇒
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Character

Conjugate elements have the same character:

[cyclic property of the trace]
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Character

Trivial irrep

Non-trivial irrep
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Character

Trivial irrep

Non-trivial irrep

Question: Have identified all the representations?

Conjugate elements have the same character:

[cyclic property of the trace]

Group  Conjugacy Classes  Group Representation  Character⇒ ⇒ ⇒
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There is one representation missing!
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Character Table and Irreducible Representations
The characters and representations are connected by the following properties:

There is one representation missing!

Trivial irrep

Non-trivial irrep

6 = 12 + 22 + d2 ⇒ d = 1

1
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Character Table and Irreducible Representations
The characters and representations are connected by the following properties:

There is one representation missing!

Trivial irrep

Non-trivial irrep

6 = 12 + 22 + d2 ⇒ d = 1

1 A B
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Character Table and Irreducible Representations
The characters and representations are connected by the following properties:

There is one representation missing!

Trivial irrep

Non-trivial irrep

6 = 12 + 22 + d2 ⇒ d = 1

1 A B
(1).1.1 + (2)1.A + (3).1.B = 0
(1).2.1 + (2) . (−1) . A + (3).0.B = 0
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Character Table and Irreducible Representations
The characters and representations are connected by the following properties:

There is one representation missing!

Trivial irrep

Non-trivial irrep

6 = 12 + 22 + d2 ⇒ d = 1

1 A B
(1).1.1 + (2)1.A + (3).1.B = 0
(1).2.1 + (2) . (−1) . A + (3).0.B = 0

A = 1,B = − 1

Group  Conjugacy Classes  Group Representation  Character  Irreducible Representations⇒ ⇒ ⇒ ⇒



Character Table and Irreducible Representations

Trivial irrep

Non-trivial irrep

Non-trivial irrep
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Character Table and Irreducible Representations

Note that these properties can in principle be derived directly 
from the group structure, without thinking about any geometric 

realisation of the transformations!

Trivial irrep

Non-trivial irrep

Non-trivial irrep
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Character Table and Irreducible Representations

Note that these properties can in principle be derived directly 
from the group structure, without thinking about any geometric 

realisation of the transformations!

Trivial irrep

Non-trivial irrep

Non-trivial irrep

These are can be found in 

• Bradley and Cracknell

• Bilbao crystallographic server

• …

Group  Conjugacy Classes  Group Representation  Character  Irreducible Representations  Labels⇒ ⇒ ⇒ ⇒ ⇒



Crystallographic Groups

Group  Conjugacy Classes  Group Representation  Character  Irreducible Representations⇒ ⇒ ⇒ ⇒



SC and other ordered phases emerge in…

[Im-3m]

Elemental Niobium

[P42/mnm]

RuO2

[P4/nmm]

CeRh2As2 

[I4/mmm]

Sr2RuO4

[R-3m]

Bi2Se3

…and many others…



From the triangle to the triangular lattice
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From the triangle to the triangular lattice

E, R[60o], R[120o], R[180o], R[240o], R[300o]
=C6 =C3 =C2 =C3-1 =C6-1
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From the triangle to the triangular lattice

σ’’d

σ’d σd

σv

σ’v

σ’’v

E, R[60o], R[120o], R[180o], R[240o], R[300o]
=C6 =C3 =C2 =C3-1 =C6-1

[12 elements in 6 classes]
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Symmetries of the square lattice

σv

σ’v

σdσ’d

E, R[90o], R[180o], R[270o]
=C4 =C2

[8 elements in 5 classes]
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Symmetries of the square lattice

σv

σ’v

σdσ’d

E, R[90o], R[180o], R[270o]
=C4 =C2

[8 elements in 5 classes]
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D4 [dihedral] point group

Top
Bottom
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Character table and irreducible representations (Irrep)

D4 [dihedral] point group
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Character table and irreducible representations (Irrep)

D4 [dihedral] point group

Top
Bottom

+1
-1

~z

~x2-y2

~xy

~{x,y}

~cte

Group  Conjugacy Classes  Group Representation  Character  Irreducible Representations  Labels  Basis Functions⇒ ⇒ ⇒ ⇒ ⇒ ⇒

Basis  
functions



[There are 32 crystallographic point groups in 3D]

https://en.wikipedia.org/wiki/Crystallographic_point_group

Crystallographic Point Groups

Cn: n-fold rotation

Cnh: Cn +  mirror

Cnv: Cn +  n  mirrors

Sn: n-fold rotation-reflection

Dn: n-fold rotations + n 2-fold  rotations

Dnh: Dn +  mirror

Dnd: Dn + n  mirror

T: Tetrahedron 

[h: with inversion, d: with improper rotations]

O: Octahedron [h: with inversion]

⊥
∥

⊥
⊥

∥



http://gernot-katzers-spice-pages.com/character_tables/



http://gernot-katzers-spice-pages.com/character_tables/

Note: For crystallographic point groups 
only (32) groups with rotation axes of 

order n=1,2,3,4,6 are allowed!
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Mercado Central de Valencia

Sun



What does this all have to do with SC 
order parameters?
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Review of basic symmetries of the order parameter
From fermionic anti-symmetry: Δ̂(k) = − Δ̂T(−k)

Δαβ(k) ∼ ⟨c−kαckβ⟩

PΔ̂(k)P−1 = Δ̂(−k) = ± Δ(k)If inversion is a symmetry:

[Assumption: does not modify the internal DOFs]

Δ̂O(k) = − Δ̂T
O(−k) = Δ̂T

O(k)

∼ | ↑ ↑ ⟩ − | ↓ ↓ ⟩
∼ | ↑ ↑ ⟩ + | ↓ ↓ ⟩
∼ | ↑ ↓ ⟩ + | ↓ ↑ ⟩

Spin triplet

Odd Parity

Δ̂E(k) = − Δ̂T
E(−k) = − Δ̂T

E(k)

∼ | ↑ ↓ ⟩ − | ↓ ↑ ⟩

Spin Singlet

Even Parity

Two decoupled sectors of 
SC order parameters:
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Δαβ(k) ∼ ⟨c−kαckβ⟩
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3D(G)k] = ± Δ(k)

For a generic symmetry :G
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Review of basic symmetries of the order parameter
From fermionic anti-symmetry: Δ̂(k) = − Δ̂T(−k)

Δαβ(k) ∼ ⟨c−kαckβ⟩

D(G)Δ̂(k)D(G)−1 = Δ̂[D−1
3D(G)k] = ± Δ(k)

For a generic symmetry :G

Can classify the order parameter according to its properties under a 
given symmetry operation (as even/odd in analogy to the parity)

Preserves 
Symmetry

Breaks 
Symmetry

Note: Now there can be multiple symmetry operations present!

[Irreducible representations are now useful!]



Character table and irreducible representations (Irrep)

D4 [dihedral] point group

Top
Bottom

+1
-1

~z

~x2-y2

~xy

~{x,y}

~cte

Group  Conjugacy Classes  Group Representation  Character  Irreducible Representations  Labels  Basis Functions⇒ ⇒ ⇒ ⇒ ⇒ ⇒

Basis  
functions



Character table and irreducible representations (Irrep)

D4 [dihedral] point group

Top
Bottom

+1
-1

~z

~x2-y2

~xy

~{x,y}

~cte

Unconventional SC: (almost always) Nodal gap structure!
Conventional SC: (almost always) Fully gapped!

Group  Conjugacy Classes  Group Representation  Character  Irreducible Representations  Labels  Basis Functions⇒ ⇒ ⇒ ⇒ ⇒ ⇒

Basis  
functions



Unconventional Superconductors

1D Irrep …preserves the point 
group symmetry.

…breaks the point 
group symmetry.

Gap amplitude 

+

+

--

+-

Gap

2D Irrep

Special scenario I: 2D Irrep and Nematicity
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Unconventional Superconductors

1D Irrep …preserves the point 
group symmetry.

…breaks the point 
group symmetry.

Gap amplitude 

+

+

--

+-

What are the observable consequences?

• Distinct anisotropy in C/T and Hc2  

• Associated lattice deformations

Gap

2D Irrep

S. Yonezawa et al., Nature Physics 13, 123 (2017)

CuxBi2Se3

Special scenario I: 2D Irrep and Nematicity

[NEMATIC SC]
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Unconventional Superconductors

A complex superposition of the two components in a 
2D irrep usually lifts the nodes (generally more stable):

+-
+

-
+ i =

Special scenario II: 2D Irrep and TRSB

Δ(k) ∼ kx ± iky

|Δ(k) | ∼ k2
x + k2

y

[CHIRAL SC]

Note: Isotropic Gap, but certainly unconventional!

What are the observable consequences?

• Polar Kerr Effect 
• Muon Spin Relaxation

J. Xia et al., Phys. Rev. Lett. 97, 167002 (2006)

Sr2RuO4
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D4h = D4 + inversion

Only gives us information 
about the k-dependent 

part of the gap function.









???



In the presence of SOC:

P = σ0

C2x = eiπσ1/2 = iσ1

C4z = eiπσ3/4 =
σ0 − iσ3

2

Symmetry operations also act on 
the spin DOF and influence the 

classification of SC order 
parameters.

The irreps associated with each 
spin configuration in the triplet 

sector can be deduced from the 
explicit form of the generators:

Spin singlet (associated with ) 
always transforms trivially;

σ0

Homework!



Can deduce irreps for all other point groups by “symmetry descent”

Complete classification of SC 
order parameters from the 

perspective of point groups!
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How to describe the superconducting 
states in complex materials with 

multiple internal DOFs?
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Considering multiple internal DOF (orbitals/sublattice)

The mean-field BdG Hamiltonian

Orbital/SL Spin

In principle parametrised in terms of (3+1)x(3+1) = 16 functions dab(k)

If : Intra-orbital/SL 
If : Inter-orbital/SL

a = 0,3
a = 1,2

If : Spin Singlet 
If : Spin Triplet

b = 0
b = 1,2,3

Annica’s Lecture:
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Considering multiple internal DOF (orbitals)

Singlet/triplet are not directly associated 
with even/odd k or with even/odd parity!

Spin Singlet [b=0]

Spin Triplet [b=1,2,3]

k-dependence does not 
uniquely define the parity of the 

SC order parameter!



Some examples of nontrivial phenomenology

CaBe2Ge2-type [P4/nmm] 
Centro-symmetric 

Atomic sites are NOT inversion centers
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Superconductivity in Complex Quantum Materials

Only spin

Orbital/Layer/Sublattice+Spin
Can transform non-trivially under inversion!

The case of CeRh2As2

Sublattice structure

D. Möckli and A. Ramires, Phys. Rev. Research 3, 023204 (2021)

Even-parity, k-odd,  
intra-layer, spin-triplet 

Two superconducting phases!

The case of d-Bi2Se3

Even- and odd-P orbitals

L. Andersen*, A. Ramires* et al., Sci. Adv. 6, eaay6502 (2020)

Odd-parity, s-wave,  
inter-orbital, spin-singlet 

Generalized Anderson’s Theorem

The case of Sr2RuO4

3 orbitals

[6,3] + i[5,3]

S. Beck, A. Ramires et al., Phys. Rev. Research 4, 023060 (2022)

Chiral d-wave superconductivity 
[Orbital antisymmetric spin-triplet]

Chiral d-wave in 2D FS!
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Three orbitals with same parity: Sr2RuO4

CaBe2Ge2-type [P4/nmm] 
Centro-symmetric 

Atomic sites are NOT inversion centers

S. Beck, A. Ramires et al., Phys. Rev. Research 4, 023060 (2022)

© Felix Baumberger

3 t2g orbitals/3 bands system

H. G. Suh, A. Ramires et al., Phys. Rev. Res. 2, 032023(R) (2020)

• Uncovered mechanism for chiral d-wave! 
• Engineering the normal state to enhance Tc!

Phase diagram  
[atomic x k-dependent SOC]

Eg

A1g

Hund’s interaction  
[inter-orbital]

SC states [Even-parity sector]

Microscopic basis: E-parity/S-Triplet 
Band basis: pseudospin-S



Two-orbitals with opposite parity: d-Bi2Se3

CaBe2Ge2-type [P4/nmm] 
Centro-symmetric 

Atomic sites are NOT inversion centers

Pz-like orbitals in a quintuple layer



Two-orbitals with opposite parity: d-Bi2Se3

CaBe2Ge2-type [P4/nmm] 
Centro-symmetric 

Atomic sites are NOT inversion centers

Pz-like orbitals in a quintuple layer K-independent sector

Odd parity  Nodes! 
[Sensitive to disorder]

⇒



Two-orbitals with opposite parity: d-Bi2Se3

CaBe2Ge2-type [P4/nmm] 
Centro-symmetric 

Atomic sites are NOT inversion centers

Pz-like orbitals in a quintuple layer K-independent sector

Odd parity  Nodes! 
[Sensitive to disorder]

⇒

+-

M. P. Smylie et al., PRB 96, 115145 (2017)

Experiment/Theory



Two-orbitals with opposite parity: d-Bi2Se3

CaBe2Ge2-type [P4/nmm] 
Centro-symmetric 

Atomic sites are NOT inversion centers

Pz-like orbitals in a quintuple layer K-independent sector

Odd parity  Nodes! 
[Sensitive to disorder]

⇒

L. Andersen*, A. Ramires* et al., Sci. Adv. 6, eaay6502 (2020)
B. Zinkl and A. Ramires, Phys. Rev. B 106, 014515 (2022)

“Generalised Anderson’s Theorem”

+-

M. P. Smylie et al., PRB 96, 115145 (2017)

Experiment/Theory



Two sublattices/layers: CeRh2As2

“Trivial”  
Even-parity SC

Bz

Bz-robust  
Odd-parity SC

Cartoon picture:

M. Sigrist et al., J. Phys. Soc. Jpn. 83, 061014 (2014) 
T. Yoshida et al., Phys. Rev. B 86, 134514 (2012) 
D. Maruyama et al., J. Phys. Soc. Jpn. 81, 034702 (2012) 
D. Möckli and A. Ramires, Phys. Rev. Research 3, 023204 (2021) 
D. Möckli and A. Ramires, Phys. Rev. B 104, 134517 (2021)
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Two sublattices/layers: CeRh2As2

Trivial pairing + Twist = Odd parity SC

w.r.t. an extra internal DOF  
[SL/layers/orbitals/…]

⇕

“Trivial”  
Even-parity SC

Bz

Bz-robust  
Odd-parity SC

Cartoon picture:

M. Sigrist et al., J. Phys. Soc. Jpn. 83, 061014 (2014) 
T. Yoshida et al., Phys. Rev. B 86, 134514 (2012) 
D. Maruyama et al., J. Phys. Soc. Jpn. 81, 034702 (2012) 
D. Möckli and A. Ramires, Phys. Rev. Research 3, 023204 (2021) 
D. Möckli and A. Ramires, Phys. Rev. B 104, 134517 (2021)
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Two sublattices/layers: CeRh2As2

Successfully fits the HxT 
phase diagram 

2 fitting 
parameters:

  and α̃ αm

Khim et al., Science 373, 1012 (2021)

Landaeta et al., PRX 12, 031001 (2022)

Successfully addresses the 
magnetic field anisotropy

Trivial pairing + Twist = Odd parity SC

w.r.t. an extra internal DOF  
[SL/layers/orbitals/…]

⇕

“Trivial”  
Even-parity SC

Bz

Bz-robust  
Odd-parity SC

Cartoon picture:

M. Sigrist et al., J. Phys. Soc. Jpn. 83, 061014 (2014) 
T. Yoshida et al., Phys. Rev. B 86, 134514 (2012) 
D. Maruyama et al., J. Phys. Soc. Jpn. 81, 034702 (2012) 
D. Möckli and A. Ramires, Phys. Rev. Research 3, 023204 (2021) 
D. Möckli and A. Ramires, Phys. Rev. B 104, 134517 (2021)

Elena’s Lecture
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CaBe2Ge2-type [P4/nmm] 
Centro-symmetric 

Atomic sites are NOT inversion centers

S. Khim et al., Science 373, 1012 (2021) 
S. Adenwalla et a., Phys. Rev. Lett. 65, 2298 (1990) 
D. Aoki et al., J. Phys. Soc. Jpn. 89, 053705 (2020)  
S. Ran et al., Nature Physics 15, 1250 (2019)
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Some common themes…

• Phase diagrams with multiple SC phases are rare! 
• Only observed in other two HF materials! 
• Indication of unconventional SC state!

CaBe2Ge2-type [P4/nmm] 
Centro-symmetric 

Atomic sites are NOT inversion centers

S. Khim et al., Science 373, 1012 (2021) 
S. Adenwalla et a., Phys. Rev. Lett. 65, 2298 (1990) 
D. Aoki et al., J. Phys. Soc. Jpn. 89, 053705 (2020)  
S. Ran et al., Nature Physics 15, 1250 (2019)

UTe2 
@ 0.54 GPa

UPt3

CeRh2As2

• Common theme: sublattice DOF?!
T. Hazra et al., Phys. Rev. Lett. 130, 136002 (2023)

Nonsymmorphic Body-centered

P63/mmc

P4/nmm I/mmm

Nonsymmorphic



Bibliography [group theory & superconductivity]

Still mystery after all these years -- Unconventional SC of Sr2RuO4 
Yoshiteru Maeno, Shingo Yonezawa, Aline Ramires

arXiv:2402.12117 [Invited review to appear in JPSJ]

Phenomenological Theory of Unconventional Superconductivity 
Manfred Sigrist and Kazuo Ueda
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Symmetry aspects of Chiral Superconductors 
Aline Ramires
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Nonunitary Superconductivity in Complex Quantum Materials 
Aline Ramires
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Crystallographic Space Groups in 3D
[There are 230 space groups in 3D]

https://en.wikipedia.org/wiki/Space_group

Continues with tetragonal, trigonal, hexagonal and cubic…

A general space-group operation can be 
written as [Seitz notation]:

{G | t}

Point 
operation Translation

{E |0}
{G |0}
{E | t}

Identity
Pure point operation
Pure translation

Examples:

Action on coordinates:

{G | t}r = D3D(G)r + t

Composition:

{G1 | t1}{G2 | t2} = {G1 . G2 |G1t2 + t1}

Note: Order of the SG is infinite (translations!)
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Compound space group operations (I) 
Glide Plane: {M | t∥}

Definition: A glide plane consists of a reflection followed by a  
(non-primitive) translation parallel to the plane of reflection.

PLV

(1/2)PLV

1D Example

2D Example

Images: WikipediaPLV: Primitive Lattice Vector
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Compound space group operations (II) 
Screw axis: {R | t∥}

Definition: A screw axis consists of a rotation followed by a (non-
primitive) translation along the axis of rotation.

J. Li et al., Phil. Mag. 93, 3216 (2013)

3D Example: Elemental Te [helical chains]

[P3121]

(1/3)PLV

PLV

A. Sazbo and A. Ramires arXiv.2309.05664 (2023)

3D Example: CeRh2As2

[P4/nmm]
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https://phys.org/news/2022-11-anomalous-hall-effect-altermagnetic-ruthenium.html

Altermagnetism: Example of RuO2

[P42/mnm]

Nonsymmorphic

Jairo’s Lecture

[I, C2z, …]
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Nonsymmorphic Space groups

Consider a space group  with operations  which leave a 
given lattice invariant. We can rewrite each operation as:

G {G | t}

{G | t} = {G |TPLV + t̃} = {E |TPLV}{G | t̃}

If, by ANY choice of origin we find that AT LEAST ONE of the elements of  have 




the space group is called NONSYMMORPHIC

G
t̃ ≠ 0

If, by a suitable choice of origin we find that ALL elements of  have 




the space group is called SYMMORPHIC

G
t̃ = 0

Definition:
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“From Point Groups to Space Groups”
What happens to the irreps we found in the context of point groups?

 Need to take translations into account!⇒

 Bloch’s functions are basis functions for the group 
of translations (labelled by momenta k)
⇒

Translations in 3D: three sets of (infinite) Abelian subgroups

 Infinite conjugacy classes = Infinite irreps⇒

Symmorphic groups:

Nonsymmorphic groups: More complicated…but there are tables!



Nonsymmorphic symmetry 
Manifestation #1: Symmetry-protected band crossings

s-states in a diamond lattice 

[Fd-3m]

S. M. Young et al., PRL 108, 140405 (2012)

Hourglass fermions in KHgSb 

[P63/mmc]

S. Wang et al., Nature 532, 189 (2016)
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Manifestation #2: New OP connectivities 
in modulated systems

Cvektovik et al., Phys. Rev. B 88, 134510 (2013)

Fe-based SC [P4/nmm]

Band perspective



Nonsymmorphic symmetry 
Manifestation #2: New OP connectivities 
in modulated systems

Cvektovik et al., Phys. Rev. B 88, 134510 (2013)

Fe-based SC [P4/nmm]

Band perspective
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Fc = γM1M2P + . . .

CeRh2As2 [P4/nmm]
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Blount’s Theorem: 
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superconductors in the presence of SOC”

E. I. Blount, Phys. Rev. B 32, 2935 (1985)



Nonsymmorphic symmetry 
Manifestation #3: New nodes at the BZ edge

Blount’s Theorem: 

“there are no line nodes in odd-parity 

superconductors in the presence of SOC”

E. I. Blount, Phys. Rev. B 32, 2935 (1985)

UPt3 [P63/mmc]

M. R. Norman, PRB 52, 15093 (1995)



Nonsymmorphic symmetry 
Manifestation #3: New nodes at the BZ edge

Z. Wang et al., PRB 96, 174511 (2017)

FS in 3D BZ FS in  planekz = π

S. Kobayashi et al., PRB 94, 134512 (2016)
T. Micklitz et al., PRL 118, 207001 (2017)
T. Micklitz et al.,  PRB 95, 024508 (2017)

S. Sumita Ph.D. Thesis (2019) 
…

In the SC state:

Line nodes!

Blount’s Theorem: 

“there are no line nodes in odd-parity 

superconductors in the presence of SOC”

E. I. Blount, Phys. Rev. B 32, 2935 (1985)

UPt3 [P63/mmc]

M. R. Norman, PRB 52, 15093 (1995)



Brief introduction to group theory concepts: 
Group  Conjugacy Classes  Group Representation


                   Character  Irreducible Representations


Crystallographic Point Groups: 
 SC order parameter classification

 Conventional/unconventional

 Nematic/Chiral


Beyond the Sigrist-Ueda Classification: 
 Multiple internal DOFs (orbitals/layers/sublattices)

 Nonsymmorphic symmetries

⇒ ⇒
⇒ ⇒

⇒
⇒
⇒

⇒
⇒

Summary/Conclusion

“Loopholes” to what we have thought were very well-established 
concepts and theorems in the field…are there more of them?

Homework!




