PAUL SCHERRER INSTITUT

Aline Ramires :: Ambizione Fellow :: Junior Group Leader Condensed Matter Theory Group Paul Scherrer Institute

Introduction to group theory and the classification of [superconducting] states

European School on Superconductivity and Magnetism in Quantum Materials Valencia - 21-25 April 2024

Acknowledgements

Manfred Sigrist ETHZ

Daniel Agterberg U. Wisconsin

Carsten Timm **TU Dresden**

Philip Brydon Otago U.

Sophie Beck Flatiron

Manuel Zingl BAWAG

Jose Lado Aalto

Bastian Zinkl $ETHZ \Rightarrow CS$

David Möckli UFRGS

András Szabó ETHZ

Ilaria Maccari ETHZ

Simon Hille **Bonn/ETHZ**

Outline

Brief introduction to group theory concepts:

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations

Crystallographic Point Groups:

- \Rightarrow SC order parameter classification [Sigrist-Ueda]
- \Rightarrow Conventional/unconventional
- \Rightarrow Nematic/Chiral

Beyond the Sigrist-Ueda Classification:

- ⇒ Multiple internal DOFs (orbitals/layers/sublattices)
- \Rightarrow Nonsymmorphic symmetries

Introduction to Group Theory

Bibliography

M. Hamermesh, *Group Theory and its Application to Physical Problems*, Addison-Wesley (1962);

C. J. Bradley and A. P. Cracknell, *The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups*, Claredon Press (1972);

M.S. Dresselhaus, G. Dresselhaus, and A. Jorio, *Group Theory Application to the Physics of Condensed Matter*, Springer (2008).

Group

What is a group?

What is a group?

Definition: A group \mathbf{G} is a set of elements together with a composition law (.), also referred to as product or multiplication law, such that:

1. The product of any two elements is a member of the group:

if A and $B \in \mathbf{G}$, then $A.B \in \mathbf{G}$;

2. The product is associative:

A.(B.C) = (A.B).C for all $A, B, C \in \mathbf{G}$;

3. There exists a unique identity element E:

E.A = A.E = A for all $A \in \mathbf{G}$;

4. Every element has a unique inverse:

Example A: The integer numbers (...-2,-1,0,1,2,...) with the operation of addition (+) is called the *additive group of the integers*. The requirements above hold:

1. The composition law (here addition) of any two elements is a member of the group:

 $1 + 1 = 2, 2 + 7 = 9, (-5) + 3 = (-2), (-1) + (-3) = (-4), \dots$

2. The composition is associative:

$$1 + 5 + (-3) = (1 + 5) + (-3) = 6 + (-3) = 3$$
$$1 + 5 + (-3) = 1 + [5 + (-3)] = 1 + 2 = 3$$

3. There exists a unique identity element E = 0:

 $1 + 0 = 1, 3 + 0 = 3, (-5) + 0 = (-5), \dots$

4. Every element has a unique inverse (the element with opposite sign):

 $1 + (-1) = 0, (-3) + 3 = 0, \dots$

Group

Example A: The integer numbers (...-2,-1,0,1,2,...) with the operation of addition (+) is called the *additive group of the integers*. The requirements above hold:

1. The composition law (here addition) of any two elements is a member of the group:

$$1 + 1 = 2, 2 + 7 = 9, (-5) + 3 = (-2), (-1) + (-3) = (-4), \dots$$

2. The composition is associative:

$$1 + 5 + (-3) = (1 + 5) + (-3) = 6 + (-3) = 3$$

$$1 + 5 + (-3) = 1 + [5 + (-3)] = 1 + 2 = 3$$

3. There exists a unique identity element E = 0:

 $1 + 0 = 1, 3 + 0 = 3, (-5) + 0 = (-5), \dots$

4. Every element has a unique inverse (the element with opposite sign):

 $1 + (-1) = 0, (-3) + 3 = 0, \dots$

Group

Example A: The integer numbers (...-2,-1,0,1,2,...) with the operation of addition (+) is called the *additive group of the integers*. The requirements above hold:

1. The composition law (here addition) of any two elements is a member of the group:

$$1 + 1 = 2, 2 + 7 = 9, (-5) + 3 = (-2), (-1) + (-3) = (-4), \dots$$

2. The composition is associative:

$$1 + 5 + (-3) = (1 + 5) + (-3) = 6 + (-3) = 3$$
$$1 + 5 + (-3) = 1 + [5 + (-3)] = 1 + 2 = 3$$

3. There exists a unique identity element E = 0:

 $1 + 0 = 1, 3 + 0 = 3, (-5) + 0 = (-5), \dots$

4. Every element has a unique inverse (the element with opposite sign):

$$1 + (-1) = 0, (-3) + 3 = 0, \dots$$

Example A: The integer numbers (...-2,-1,0,1,2,...) with the operation of addition (+) is called the *additive group of the integers*. The requirements above hold:

1. The composition law (here addition) of any two elements is a member of the group:

$$1 + 1 = 2, 2 + 7 = 9, (-5) + 3 = (-2), (-1) + (-3) = (-4), \dots$$

2. The composition is associative:

$$1 + 5 + (-3) = (1 + 5) + (-3) = 6 + (-3) = 3$$
$$1 + 5 + (-3) = 1 + [5 + (-3)] = 1 + 2 = 3$$

- 3. There exists a unique identity element E = 0: 1 + 0 = 1, 3 + 0 = 3, (-5) + 0 = (-5),...
- 4. Every element has a unique inverse (the element with opposite sign):

$$1 + (-1) = 0, (-3) + 3 = 0,...$$

Example A: The integer numbers (...-2,-1,0,1,2,...) with the operation of addition (+) is called the *additive group of the integers*. The requirements above hold:

1. The composition law (here addition) of any two elements is a member of the group:

$$1 + 1 = 2, 2 + 7 = 9, (-5) + 3 = (-2), (-1) + (-3) = (-4), \dots$$

2. The composition is associative:

$$1 + 5 + (-3) = (1 + 5) + (-3) = 6 + (-3) = 3$$
$$1 + 5 + (-3) = 1 + [5 + (-3)] = 1 + 2 = 3$$

3. There exists a unique identity element E = 0: 1 + 0 = 1, 3 + 0 = 3, (-5) + 0 = (-5),...

$$1 + (-1) = 0, (-3) + 3 = 0, \dots$$

Example A: The integer numbers (...-2,-1,0,1,2,...) with the operation of addition (+) is called the *additive group of the integers*. The requirements above hold:

1. The composition law (here addition) of any two elements is a member of the group:

 $1 + 1 = 2, 2 + 7 = 9, (-5) + 3 = (-2), (-1) + (-3) = (-4), \dots$

2. The composition is associative:

$$1 + 5 + (-3) = (1 + 5) + (-3) = 6 + (-3) = 3$$
$$1 + 5 + (-3) = 1 + [5 + (-3)] = 1 + 2 = 3$$

3. There exists a unique identity element E = 0:

1 + 0 = 1, 3 + 0 = 3, (-5) + 0 = (-5),...

4. Every element has a unique inverse (the element with opposite sign):

 $1 + (-1) = 0, (-3) + 3 = 0, \dots$

Order of the group: number of elements in the group [The additive group of the integers is infinite]

Example B: The group of transformations of the equilateral triangle. The group is composed of the identity, rotations by 120° (R_1) and 240° (R_2) around the axis passing through the center of the triangle (coming out of the page), and reflections at three different mirror planes which pass though the center and the triangle's edges: M_i with i = 1, 2, 3, as indicated in Fig. 1.

Example B: The group of transformations of the equilateral triangle. The group is composed of the identity, rotations by 120° (R_1) and 240° (R_2) around the axis passing through the center of the triangle (coming out of the page), and reflections at three different mirror planes which pass though the center and the triangle's edges: M_i with i = 1, 2, 3, as indicated in Fig. 1.

six operations in the group: $E, R_1, R_2, M_1, M_2, M_3$.

Order of the group: number of elements in the group [The group of symmetries of the equilateral triangle has order 6]

 The "product" (here the composition) of any two elements is a member of the group Convention: Apply first the right most operation.

 The "product" (here the composition) of any two elements is a member of the group Convention: Apply first the right most operation.

(you can check the remaining combinations)

1. The "product" (here the composition) of any two elements is a member of the group (note that the right most operation is the one to be applied first):

(you can check the remaining combinations)

1. The product of any two elements is a member of the group:

if A and $B \in \mathbf{G}$, then $A.B \in \mathbf{G}$;

There is a total of 36 pairs of operations to be checked. You can check that all combinations result in one of the six operations in the group: $E, R_1, R_2, M_1, M_2, M_3$.

	Ε	$\mathbf{R_1}$	$\mathbf{R_2}$	$\mathbf{M_1}$	M_2	M_3
\mathbf{E}	E	R_1	R_2	M_1	M_2	M_3
$\mathbf{R_1}$	R_1	R_2	E	M_2	M_3	M_1
$\mathbf{R_2}$	R_2	E	R_1	M_3	M_1	M_2
$\mathbf{M_1}$	M_1	M_3	M_2	E	R_2	R_1
$\mathbf{M_2}$	M_2	M_1	M_3	R_1	E	R_2
$\mathbf{M_3}$	M_3	M_2	M_1	R_2	R_1	E

1. The product of any two elements is a member of the group:

if A and $B \in \mathbf{G}$, then $A.B \in \mathbf{G}$;

There is a total of 36 pairs of operations to be checked. You can check that all combinations result in one of the six operations in the group: $E, R_1, R_2, M_1, M_2, M_3$.

	\mathbf{E}	$\mathbf{R_1}$	$\mathbf{R_2}$	$\mathbf{M_1}$	M_2	M_3
E	E	R_1	R_2	M_1	M_2	M_3
$\mathbf{R_1}$	R_1	R_2	E	M_2	M_3	M_1
$\mathbf{R_2}$	R_2	E	R_1	M_3	M_1	M_2
$\mathbf{M_1}$	M_1	M_3	M_2	E	R_2	R_1
$\mathbf{M_2}$	M_2	M_1	M_3	R_1	E	R_2
$\mathbf{M_3}$	M_3	M_2	M_1	R_2	R_1	E

Multiplication Table

2. The product is associative:

A.(B.C) = (A.B).C for all $A, B, C \in \mathbf{G}$;

3. There exists a unique identity element E:

E.A = A.E = A for all $A \in \mathbf{G}$;

4. Every element has a unique inverse:

	\mathbf{E}	$\mathbf{R_1}$	$\mathbf{R_2}$	$\mathbf{M_1}$	$\mathbf{M_2}$	M_3
\mathbf{E}	E	R_1	R_2	M_1	M_2	M_3
\mathbf{R}_1	R_1	R_2	E	M_2	M_3	M_1
$\mathbf{R_2}$	R_2	E	R_1	M_3	M_1	M_2
$\mathbf{M_1}$	M_1	M_3	M_2	E	R_2	R_1
M_2	M_2	M_1	M_3	R_1	E	R_2
M_3	M_3	M_2	M_1	R_2	R_1	E

Multiplication Table

Homework!

- 2. The product is associative:
 - A.(B.C) = (A.B).C for all $A, B, C \in \mathbf{G}$;
 - 3. There exists a unique identity element E:

E.A = A.E = A for all $A \in \mathbf{G}$;

4. Every element has a unique inverse:

	Ε	$\mathbf{R_1}$	$\mathbf{R_2}$	$\mathbf{M_1}$	M_2	$\mathbf{M_3}$
Ε	E	R_1	R_2	M_1	M_2	M_3
$\mathbf{R_1}$	R_1	R_2	E	M_2	M_3	M_1
$\mathbf{R_2}$	R_2	E	R_1	M_3	M_1	M_2
$\mathbf{M_1}$	M_1	M_3	M_2	E	R_2	R_1
M_2	M_2	M_1	M_3	R_1	E	R_2
M_3	M_3	M_2	M_1	R_2	R_1	E

Multiplication Table

Homework!

- 2. The product is associative:
 - A.(B.C) = (A.B).C for all $A, B, C \in \mathbf{G}$;
 - 3. There exists a unique identity element E:
 - E.A = A.E = A for all $A \in \mathbf{G}$;
 - 4. Every element has a unique inverse:

	E	$\mathbf{R_1}$	$\mathbf{R_2}$	$\mathbf{M_1}$	$\mathbf{M_2}$	$\mathbf{M_3}$
\mathbf{E}	E	R_1	R_2	M_1	M_2	M_3
\mathbf{R}_1	R_1	R_2	E	M_2	M_3	M_1
$\mathbf{R_2}$	R_2	E	R_1	M_3	M_1	M_2
$\mathbf{M_1}$	M_1	M_3	M_2	E	R_2	R_1
M_2	M_2	M_1	M_3	R_1	E	R_2
M_3	M_3	M_2	M_1	R_2	R_1	E

Multiplication Table

A.(B.C) = (A.B).C for all $A, B, C \in \mathbf{G}$;

3. There exists a unique identity element E:

Homework!

4. Every element has a unique inverse:

E.A = A.E = A for all $A \in \mathbf{G}$;

2. The product is associative:

	E	$\mathbf{R_1}$	$\mathbf{R_2}$	$\mathbf{M_1}$	M_2	$\mathbf{M_3}$
E	E	R_1	R_2	M_1	M_2	M_3
$\mathbf{R_1}$	R_1	R_2	E	M_2	M_3	M_1
$\mathbf{R_2}$	R_2	E	R_1	M_3	M_1	M_2
$\mathbf{M_1}$	M_1	M_3	M_2	E	R_2	R_1
$\mathbf{M_2}$	M_2	M_1	M_3	R_1	E	R_2
$\mathbf{M_3}$	M_3	M_2	M_1	R_2	R_1	E

Multiplication Table

Homework!

- 2. Tł
- 2. The product is associative:
 - A.(B.C) = (A.B).C for all $A, B, C \in \mathbf{G}$;
- 3. There exists a unique identity element E:
 - E.A = A.E = A for all $A \in \mathbf{G}$;
- 4. Every element has a unique inverse:

given $A \in \mathbf{G}$, there exists an element A^{-1} such that $A \cdot A^{-1} = A^{-1} \cdot A = E$.

	E	$\mathbf{R_1}$	$\mathbf{R_2}$	$\mathbf{M_1}$	M_2	$\mathbf{M_3}$
E	E	R_1	R_2	M_1	M_2	M_3
$\mathbf{R_1}$	R_1	R_2	E	M_2	M_3	M_1
$\mathbf{R_2}$	R_2	E	R_1	M_3	M_1	M_2
$\mathbf{M_1}$	M_1	M_3	M_2	E	R_2	R_1
$\mathbf{M_2}$	M_2	M_1	M_3	R_1	E	R_2
$\mathbf{M_3}$	M_3	M_2	M_1	R_2	R_1	E

C_{3v} point group [isomorphic to S₃]

Conjugate Elements: Two elements G_1 and G_2 are said to be conjugate if there exists an element G in **G** such that $G_1 = GG_2G^{-1}$;

Conjugate Elements: Two elements G_1 and G_2 are said to be conjugate if there exists an element G in **G** such that $G_1 = GG_2G^{-1}$;

Group of Symmetries of the Equilateral triangle

	\mathbf{E}	$\mathbf{R_1}$	$\mathbf{R_2}$	$\mathbf{M_1}$	M_2	$\mathbf{M_3}$
Ε	E	R_1	R_2	M_1	M_2	M_3
$\mathbf{R_1}$	R_1	R_2	E	M_2	M_3	M_1
$\mathbf{R_2}$	R_2	E	R_1	M_3	M_1	M_2
M_1	M_1	M_3	M_2	E	R_2	R_1
M_2	M_2	M_1	M_3	R_1	E	R_2
M_3	M_3	M_2	M_1	R_2	R_1	E

Conjugate Elements: Two elements G_1 and G_2 are said to be conjugate if there exists an element G in **G** such that $G_1 = GG_2G^{-1}$;

Group of Symmetries of the Equilateral triangle

I) Identity: $G.E.G^{-1} = G.G^{-1}.E = E$

E is not conjugate to any other element

	\mathbf{E}	$\mathbf{R_1}$	$\mathbf{R_2}$	M_1	$\mathbf{M_2}$	$\mathbf{M_3}$
\mathbf{E}	E	R_1	R_2	M_1	M_2	M_3
\mathbf{R}_1	R_1	R_2	E	M_2	M_3	M_1
$\mathbf{R_2}$	R_2	E	R_1	M_3	M_1	M_2
M_1	M_1	M_3	M_2	E	R_2	R_1
M_2	M_2	M_1	M_3	R_1	E	R_2
M_3	M_3	M_2	M_1	R_2	R_1	E

Conjugate Elements: Two elements G_1 and G_2 are said to be conjugate if there exists an element G in **G** such that $G_1 = GG_2G^{-1}$;

Group of Symmetries of the Equilateral triangle

I) Identity: $G.E.G^{-1} = G.G^{-1}.E = E$

E is not conjugate to any other element

II) Rotations: $M_i.R_1.M_i^{-1} = M_i.R_1M_i = R_2$

Rotations are conjugate to each other

	\mathbf{E}	$\mathbf{R_1}$	$\mathbf{R_2}$	$\mathbf{M_1}$	$\mathbf{M_2}$	$\mathbf{M_3}$
\mathbf{E}	E	R_1	R_2	M_1	M_2	M_3
\mathbf{R}_1	R_1	R_2	E	M_2	M_3	M_1
$\mathbf{R_2}$	R_2	E	R_1	M_3	M_1	M_2
M_1	M_1	M_3	M_2	E	R_2	R_1
M_2	M_2	M_1	M_3	R_1	E	R_2
M_3	M_3	M_2	M_1	R_2	R_1	E

Conjugate Elements: Two elements G_1 and G_2 are said to be conjugate if there exists an element G in **G** such that $G_1 = GG_2G^{-1}$;

Group of Symmetries of the Equilateral triangle

I) Identity: $G.E.G^{-1} = G.G^{-1}.E = E$

E is not conjugate to any other element

II) Rotations: $M_i.R_1.M_i^{-1} = M_i.R_1M_i = R_2$

Rotations are conjugate to each other

III) Reflections: $R_1 \cdot M_a \cdot R_1^{-1} = R_1 \cdot M_a \cdot R_2 = M_b$ $a = \{1, 2, 3\}$ and $b = \{3, 1, 2\}$

Reflections are conjugate among themselves

	\mathbf{E}	$\mathbf{R_1}$	$\mathbf{R_2}$	$\mathbf{M_1}$	$\mathbf{M_2}$	$\mathbf{M_3}$
\mathbf{E}	E	R_1	R_2	M_1	M_2	M_3
\mathbf{R}_1	R_1	R_2	E	M_2	M_3	M_1
$\mathbf{R_2}$	R_2	E	R_1	M_3	M_1	M_2
$\mathbf{M_1}$	M_1	M_3	M_2	E	R_2	R_1
M_2	M_2	M_1	M_3	R_1	E	R_2
$\mathbf{M_3}$	M_3	M_2	M_1	R_2	R_1	E

Conjugacy classes: The elements of a group can be split into conjugacy classes C_1, C_2, C_3, \ldots such that the following properties hold:

- 1. Every element of **G** is in some class and no element of **G** is in more than one class such that $\mathbf{G} = C_1 + C_2 + C_3 + \dots$;
- 2. All elements in a given class are mutually conjugate and consequently have the same order;
- 3. An element that commutes with all other elements of the group is on a class by itself;
- 4. The number of elements in a class is a divisor of the order of the group;

Conjugacy classes: The elements of a group can be split into conjugacy classes C_1, C_2, C_3, \ldots such that the following properties hold:

- 1. Every element of **G** is in some class and no element of **G** is in more than one class such that $\mathbf{G} = C_1 + C_2 + C_3 + \dots$;
- 2. All elements in a given class are mutually conjugate and consequently have the same order;
- 3. An element that commutes with all other elements of the group is on a class by itself;
- 4. The number of elements in a class is a divisor of the order of the group;

Order of an element: the number of times the element needs to be applied to be equal to the identity.

Conjugacy classes: The elements of a group can be split into conjugacy classes C_1, C_2, C_3, \ldots such that the following properties hold:

- 1. Every element of **G** is in some class and no element of **G** is in more than one class such that $\mathbf{G} = C_1 + C_2 + C_3 + \dots$;
- 2. All elements in a given class are mutually conjugate and consequently have the same order; $(G_1)^N = (G \cdot G_2 \cdot G^{-1})^N = (G \cdot G_2 \cdot G^{-1}) \cdot (G \cdot G_2 \cdot G^{-1}) \cdot (G \cdot G_2 \cdot G^{-1}) \dots (G \cdot G^{-1})$
- 3. An element that commutes with all other elements of the group is on a class by itself;
- 4. The number of elements in a class is a divisor of the order of the group;

Order of an element: the number of times the element needs to be applied to be equal to the identity.

Conjugacy classes: The elements of a group can be split into conjugacy classes C_1, C_2, C_3, \ldots such that the following properties hold:

- 1. Every element of **G** is in some class and no element of **G** is in more than one class such that $\mathbf{G} = C_1 + C_2 + C_3 + \dots$;
- 2. All elements in a given class are mutually conjugate and consequently have the same order; $(G_1)^N = (G \cdot G_2 \cdot G^{-1})^N = (G \cdot G_2 \cdot G^{-1}) \cdot (G \cdot G_2 \cdot G^{-1}) \cdot (G \cdot G_2 \cdot G^{-1}) \dots (G \cdot G^{-1})$
- An element that commutes with all other elements of the group is on a class by itself; Always the case for the identity!
- 4. The number of elements in a class is a divisor of the order of the group;

Order of an element: the number of times the element needs to be applied to be equal to the identity.

Conjugacy classes: The elements of a group can be split into conjugacy classes C_1, C_2, C_3, \ldots such that the following properties hold:

- 1. Every element of **G** is in some class and no element of **G** is in more than one class such that $\mathbf{G} = C_1 + C_2 + C_3 + \dots$;
- 2. All elements in a given class are mutually conjugate and consequently have the same order; $(G_1)^N = (G \cdot G_2 \cdot G^{-1})^N = (G \cdot G_2 \cdot G^{-1}) \cdot (G \cdot G_2 \cdot G^{-1}) \cdot (G \cdot G_2 \cdot G^{-1}) \dots (G \cdot G^{-1}) \dots$
- An element that commutes with all other elements of the group is on a class by itself; Always the case for the identity!
- 4. The number of elements in a class is a divisor of the order of the group;
- $C_1 = \{E\}$ $C_2 = \{R_1, R_2\}$ $C_3 = \{M_1, M_2, M_3\}$

Order of an element: the number of times the element needs to be applied to be equal to the identity.

Conjugacy classes: The elements of a group can be split into conjugacy classes C_1, C_2, C_3, \ldots such that the following properties hold:

- 1. Every element of **G** is in some class and no element of **G** is in more than one class such that $\mathbf{G} = C_1 + C_2 + C_3 + \dots$;
- 2. All elements in a given class are mutually conjugate and consequently have the same order; $(G_1)^N = (G \cdot G_2 \cdot G^{-1})^N = (G \cdot G_2 \cdot G^{-1}) \cdot (G \cdot G_2 \cdot G^{-1}) \cdot (G \cdot G_2 \cdot G^{-1}) \dots (G \cdot G^{-1})$
- An element that commutes with all other elements of the group is on a class by itself; Always the case for the identity!
- 4. The number of elements in a class is a divisor of the order of the group;

$C_1 = \{E\}$	1 element/order 1
$C_2 = \{R_1, R_2\}$	2 elements/order 3
$C_3 = \{M_1, M_2, M_3\}$	3 elements/order 2

Order of an element: the number of times the element needs to be applied to be equal to the identity.
Conjugacy Classes

Conjugacy classes: The elements of a group can be split into conjugacy classes C_1, C_2, C_3, \ldots such that the following properties hold:

- 1. Every element of **G** is in some class and no element of **G** is in more than one class such that $\mathbf{G} = C_1 + C_2 + C_3 + \dots$;
- 2. All elements in a given class are mutually conjugate and consequently have the same order; $(G_1)^N = (G \cdot G_2 \cdot G^{-1})^N = (G \cdot G_2 \cdot G^{-1}) \cdot (G \cdot G_2 \cdot G^{-1}) \cdot (G \cdot G_2 \cdot G^{-1}) \dots (G \cdot G^{-1}) \dots$
- An element that commutes with all other elements of the group is on a class by itself; Always the case for the identity!
- 4. The number of elements in a class is a divisor of the order of the group;

$C_1 = \{E\}$	1 element/order 1
$C_2 = \{R_1, R_2\}$	2 elements/order 3
$C_3 = \{M_1, M_2, M_3\}$	3 elements/order 2

Order of an element: the number of times the element needs to be applied to be equal to the identity.

Definition: A representation of a group **G** is a mapping D of the elements of **G** onto a set of linear operators (or matrices) with the following properties: (i) D(E) = 1, where 1 is the identity operator in the space on which the linear operator acts.

(ii) $D(G_1)D(G_2) = D(G_1G_2)$, meaning that the group multiplication law is preserved under the mapping.

Definition: A representation of a group **G** is a mapping D of the elements of **G** onto a set of linear operators (or matrices) with the following properties: (i) D(E) = 1, where 1 is the identity operator in the space on which the linear operator acts.

(ii) $D(G_1)D(G_2) = D(G_1G_2)$, meaning that the group multiplication law is preserved under the mapping.

Trivial representation:

associate the identity matrix (number one) to all elements of the group

Definition: A representation of a group **G** is a mapping D of the elements of **G** onto a set of linear operators (or matrices) with the following properties: (i) D(E) = 1, where 1 is the identity operator in the space on which the linear operator acts.

(ii) $D(G_1)D(G_2) = D(G_1G_2)$, meaning that the group multiplication law is preserved under the mapping.

Trivial representation:

associate the identity matrix (number one) to all elements of the group

Definition: A representation of a group **G** is a mapping D of the elements of **G** onto a set of linear operators (or matrices) with the following properties: (i) D(E) = 1, where 1 is the identity operator in the space on which the linear operator acts.

(ii) $D(G_1)D(G_2) = D(G_1G_2)$, meaning that the group multiplication law is preserved under the mapping.

Trivial representation:

associate the identity matrix (number one) to all elements of the group

	Ε	$\mathbf{R_1}$	$\mathbf{R_2}$	$\mathbf{M_1}$	$\mathbf{M_2}$	$\mathbf{M_3}$
\mathbf{E}	E	R_1	R_2	M_1	M_2	M_3
$\mathbf{R_1}$	R_1	R_2	E	M_2	M_3	M_1
$\mathbf{R_2}$	R_2	E	R_1	M_3	M_1	M_2
$\mathbf{M_1}$	M_1	M_3	M_2	E	R_2	R_1
$\mathbf{M_2}$	M_2	M_1	M_3	R_1	E	R_2
$\mathbf{M_3}$	M_3	M_2	M_1	R_2	R_1	E

Ok, but what about nontrivial representations?

Group of Symmetries of the Equilateral triangle

Thinking of transformations acting on the coordinates (x,y,z):

Thinking of transformations acting on the coordinates (x,y,z):

$$R_1 = \begin{pmatrix} -1/2 & +\sqrt{3}/2 & 0\\ -\sqrt{3}/2 & -1/2 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$M_1 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

	\mathbf{E}	$\mathbf{R_1}$	$\mathbf{R_2}$	$\mathbf{M_1}$	M_2	M_3
E	E	R_1	R_2	M_1	M_2	M_3
$\mathbf{R_1}$	R_1	R_2	E	M_2	M_3	M_1
$\mathbf{R_2}$	R_2	E	R_1	M_3	M_1	M_2
$\mathbf{M_1}$	M_1	M_3	M_2	E	R_2	R_1
$\mathbf{M_2}$	M_2	M_1	M_3	R_1	E	R_2
$\mathbf{M_3}$	M_3	M_2	M_1	R_2	R_1	E

You can check if matrices reproduce the structure of the group

Thinking of transformations acting on the coordinates (x,y,z):

	\mathbf{E}	$\mathbf{R_1}$	$\mathbf{R_2}$	$\mathbf{M_1}$	M_2	$\mathbf{M_3}$
E	E	R_1	R_2	M_1	M_2	M_3
$\mathbf{R_1}$	R_1	R_2	E	M_2	M_3	M_1
$\mathbf{R_2}$	R_2	E	R_1	M_3	M_1	M_2
$\mathbf{M_1}$	M_1	M_3	M_2	E	R_2	R_1
$\mathbf{M_2}$	M_2	M_1	M_3	R_1	E	R_2
$\mathbf{M_3}$	M_3	M_2	M_1	R_2	R_1	E

You can check if matrices reproduce the structure of the group

Dimension of the representation: the dimension of the space on which it acts

Thinking of transformations acting on the coordinates (x,y,z):

	E	$\mathbf{R_1}$	$\mathbf{R_2}$	$\mathbf{M_1}$	M_2	M_3
E	E	R_1	R_2	M_1	M_2	M_3
$\mathbf{R_1}$	R_1	R_2	E	M_2	M_3	M_1
$\mathbf{R_2}$	R_2	E	R_1	M_3	M_1	M_2
$\mathbf{M_1}$	M_1	M_3	M_2	E	R_2	R_1
$\mathbf{M_2}$	M_2	M_1	M_3	R_1	E	R_2
$\mathbf{M_3}$	M_3	M_2	M_1	R_2	R_1	E

You can check if matrices reproduce the structure of the group

Dimension of the representation: the dimension of the space on which it acts

Generators of the group: the minimal set of operations out of which the entire group can be derived [not unique]

Group of Symmetries of the Equilateral triangle

Thinking of transformations acting on the coordinates (x,y,z):

$$R_{1} = \begin{pmatrix} -1/2 & +\sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & -1/2 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix} \qquad M_{1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

Note: The z-component never mix with the x- and y-components. This means we can divide the space in {x,y} and {z} and treat them independently. In this case we say the representation is **reducible**.

Group of Symmetries of the Equilateral triangle

Thinking of transformations acting on the coordinates (x,y,z):

$$R_{1} = \begin{pmatrix} -1/2 & +\sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad M_{1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$D_1(R_1) = \begin{pmatrix} -1/2 & +\sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix}$$
$$D_1(M_1) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

One-dimensional irreducible representation

$$D_2(R_1) = 1$$

 $D_2(M_1) = 1$

[Trivial representation]

Group of Symmetries of the Equilateral triangle

Two-dimensional irreducible representation

$$D_1(R_1) = \begin{pmatrix} -1/2 & +\sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix}$$
$$D_1(M_1) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

One-dimensional [trivial] irreducible representation

$$D_2(R_1) = 1$$
$$D_2(M_1) = 1$$

Question: How can we know that we have identified all the representations?

Character: The characters of a group representation D are the traces of the respective linear operators (matrices) $\chi_D(G_i) = \text{Tr}D(G_i)$. The trace of a matrix is the sum of its diagonal elements.

Character: The characters of a group representation D are the traces of the respective linear operators (matrices) $\chi_D(G_i) = \text{Tr}D(G_i)$. The trace of a matrix is the sum of its diagonal elements.

Conjugate elements have the same character: $G.G_1.G^{-1} = G_2$

$$\chi(G_2) = \chi(G.G_1.G^{-1}) = \chi(G^{-1}.G.G_1) = \chi(G_1)$$

[cyclic property of the trace]

Character: The characters of a group representation D are the traces of the respective linear operators (matrices) $\chi_D(G_i) = \text{Tr}D(G_i)$. The trace of a matrix is the sum of its diagonal elements.

Conjugate elements have the same character: $G.G_1.G^{-1} = G_2$

$$\chi(G_2) = \chi(G.G_1.G^{-1}) = \chi(G^{-1}.G.G_1) = \chi(G_1)$$

1

0

[cyclic property of the trace]

 $C_1 = \{E\} | C_2 = \{R_1, R_2\} | C_3 = \{M_1, M_2, M_3\}$ **Trivial irrep** 1 1 **Non-trivial irrep** 2 -1

$$D_{1}(R_{1}) = \begin{pmatrix} -1/2 & +\sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix} \qquad D_{2}(R_{1}) = 1$$
$$D_{1}(M_{1}) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \qquad D_{2}(M_{1}) = 1$$

Character: The characters of a group representation D are the traces of the respective linear operators (matrices) $\chi_D(G_i) = \text{Tr}D(G_i)$. The trace of a matrix is the sum of its diagonal elements.

Conjugate elements have the same character: $G.G_1.G^{-1} = G_2$

$$\chi(G_2) = \chi(G.G_1.G^{-1}) = \chi(G^{-1}.G.G_1) = \chi(G_1)$$

1

0

[cyclic property of the trace]

 $C_1 = \{E\} | C_2 = \{R_1, R_2\} | C_3 = \{M_1, M_2, M_3\}$ **Trivial irrep** 1 1 **Non-trivial irrep** 2 -1

$$D_{1}(R_{1}) = \begin{pmatrix} -1/2 & +\sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix} \qquad D_{2}(R_{1}) = 1$$
$$D_{1}(M_{1}) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \qquad D_{2}(M_{1}) = 1$$

Question: Have identified all the representations?

- The number of irreducible representations, r, is equal to the number of conjugacy classes;
- The order of the group \mathbf{G} , $|\mathbf{G}|$, is equal to the sum of the squares of the dimensions of the irreducible representations d_i , $|\mathbf{G}| = \sum_{i=1}^r d_i^2$;
- The characters are orthonormal: $\sum_{i=1}^{r} n_i \chi_D^*(G_i) \chi_{D'}(G_i) = |\mathbf{G}| \delta^{DD'}$, where n_i is the number of elements in the conjugacy class represented by G_i .

- The number of irreducible representations, r, is equal to the number of conjugacy classes; There is one representation missing!
- The order of the group \mathbf{G} , $|\mathbf{G}|$, is equal to the sum of the squares of the dimensions of the irreducible representations d_i , $|\mathbf{G}| = \sum_{i=1}^r d_i^2$;
- The characters are orthonormal: $\sum_{i=1}^{r} n_i \chi_D^*(G_i) \chi_{D'}(G_i) = |\mathbf{G}| \delta^{DD'}$, where n_i is the number of elements in the conjugacy class represented by G_i .

- The number of irreducible representations, *r*, is equal to the number of conjugacy classes; There is one representation missing!
- The order of the group **G**, $|\mathbf{G}|$, is equal to the sum of the squares of the dimensions of the irreducible representations d_i , $|\mathbf{G}| = \sum_{i=1}^r d_i^2$; $\mathbf{6} = 1^2 + 2^2 + d^2 \Rightarrow d = 1$
- The characters are orthonormal: $\sum_{i=1}^{r} n_i \chi_D^*(G_i) \chi_{D'}(G_i) = |\mathbf{G}| \delta^{DD'}$, where n_i is the number of elements in the conjugacy class represented by G_i .

- The number of irreducible representations, r, is equal to the number of conjugacy classes; There is one representation missing!
- The order of the group G, |G|, is equal to the sum of the squares of the dimensions of the irreducible representations d_i , $|G| = \sum_{i=1}^r d_i^2$; $6 = 1^2 + 2^2 + d^2 \Rightarrow d = 1$
- The characters are orthonormal: $\sum_{i=1}^{r} n_i \chi_D^*(G_i) \chi_{D'}(G_i) = |\mathbf{G}| \delta^{DD'}$, where n_i is the number of elements in the conjugacy class represented by G_i .

	$C_1 = \{E\}$	$C_2 = \{R_1, R_2\}$	$C_3 = \{M_1, M_2, M_3\}$
Trivial irrep	1	1	1
Non-trivial irrep	2	-1	0

- The number of irreducible representations, r, is equal to the number of conjugacy classes; There is one representation missing!
- The order of the group **G**, $|\mathbf{G}|$, is equal to the sum of the squares of the dimensions of the irreducible representations d_i , $|\mathbf{G}| = \sum_{i=1}^r d_i^2$; $\mathbf{6} = 1^2 + 2^2 + d^2 \Rightarrow d = 1$
- The characters are orthonormal: $\sum_{i=1}^{r} n_i \chi_D^*(G_i) \chi_{D'}(G_i) = |\mathbf{G}| \delta^{DD'}$, where n_i is the number of elements in the conjugacy class represented by G_i .

	$C_1 = \{E\}$	$C_2 = \{R_1, R_2\}$	$C_3 = \{M_1, M_2, M_3\}$			
Trivial irrep	1	1	1			
Non-trivial irrep	2	-1	0			
	1					

- The number of irreducible representations, r, is equal to the number of conjugacy classes; There is one representation missing!
- The order of the group **G**, $|\mathbf{G}|$, is equal to the sum of the squares of the dimensions of the irreducible representations d_i , $|\mathbf{G}| = \sum_{i=1}^r d_i^2$; $\mathbf{6} = 1^2 + 2^2 + d^2 \Rightarrow d = 1$
- The characters are orthonormal: $\sum_{i=1}^{r} n_i \chi_D^*(G_i) \chi_{D'}(G_i) = |\mathbf{G}| \delta^{DD'}$, where n_i is the number of elements in the conjugacy class represented by G_i .

	$C_1 = \{E\}$	$C_2 = \{R_1, R_2\}$	$C_3 = \{M_1, M_2, M_3\}$			
Trivial irrep	1	1	1			
Non-trivial irrep	2	-1	0			
	1	Α	В			

- The number of irreducible representations, *r*, is equal to the number of conjugacy classes; There is one representation missing!
- The order of the group **G**, $|\mathbf{G}|$, is equal to the sum of the squares of the dimensions of the irreducible representations d_i , $|\mathbf{G}| = \sum_{i=1}^r d_i^2$; $\mathbf{6} = 1^2 + 2^2 + d^2 \Rightarrow d = 1$
- The characters are orthonormal: $\sum_{i=1}^{r} n_i \chi_D^*(G_i) \chi_{D'}(G_i) = |\mathbf{G}| \delta^{DD'}$, where n_i is the number of elements in the conjugacy class represented by G_i .

- The number of irreducible representations, r, is equal to the number of conjugacy classes; There is one representation missing!
- The order of the group **G**, $|\mathbf{G}|$, is equal to the sum of the squares of the dimensions of the irreducible representations d_i , $|\mathbf{G}| = \sum_{i=1}^r d_i^2$; $\mathbf{6} = 1^2 + 2^2 + d^2 \Rightarrow d = 1$
- The characters are orthonormal: $\sum_{i=1}^{r} n_i \chi_D^*(G_i) \chi_{D'}(G_i) = |\mathbf{G}| \delta^{DD'}$, where n_i is the number of elements in the conjugacy class represented by G_i .

		$C_1 = \{E\}$	$C_2 = \{R_1, R_2\}$	$C_3 = \{M_1, M_2, M_3\}$
Trivial irrep	A_1	1	1	1
Non-trivial irrep	A_2	1	1	-1
Non-trivial irrep	E	2	-1	0

		$C_1 = \{E\}$	$C_2 = \{R_1, R_2\}$	$C_3 = \{M_1, M_2, M_3\}$
Trivial irrep	A_1	1	1	1
Non-trivial irrep	A_2	1	1	-1
Non-trivial irrep	E	2	-1	0

		$C_1 = \{E\}$	$C_2 = \{R_1, R_2\}$	$C_3 = \{M_1, M_2, M_3\}$
Trivial irrep	A_1	1	1	1
Non-trivial irrep	A_2	1	1	-1
Non-trivial irrep	E	2	-1	0

Note that these properties can in principle be derived directly from the group structure, without thinking about any geometric realisation of the transformations!

		$C_1 = \{E\}$	$C_2 = \{R_1, R_2\}$	$C_3 = \{M_1, M_2, M_3\}$
Trivial irrep	A_1	1	1	1
Non-trivial irrep	A_2	1	1	-1
Non-trivial irrep	E	2	-1	0

Note that these properties can in principle be derived directly from the group structure, without thinking about any geometric realisation of the transformations!

These are can be found in

- Bradley and Cracknell
- Bilbao crystallographic server

•

bilbao crystallographic server

 $\textbf{Group} \Rightarrow \textbf{Conjugacy Classes} \Rightarrow \textbf{Group Representation} \Rightarrow \textbf{Character} \Rightarrow \textbf{Irreducible Representations}$

Crystallographic Groups

SC and other ordered phases emerge in...

E, R[60°], R[120°], R[180°], R[240°], R[300°]

 $=C_6 = C_3 = C_2 = C_3^{-1} = C_6^{-1}$

E, R[60°], R[120°], R[180°], R[240°], R[300°]

 $=C_6 = C_3 = C_2 = C_3^{-1} = C_6^{-1}$

E, R[90°], R[180°], R[270°] =C₄ =C₂

E, R[90°], R[180°], R[270°] =C₄ =C₂

E, R[90°], R[180°], R[270°] =C₄ =C₂

Character table and irreducible representations (Irrep)

E $2C_4(z)$	$C_2(z)$	$2C_2(x)$	$2C_2(d)$
---------------	----------	-----------	-----------

Character table and irreducible representations (Irrep)

TopBottom

Irrep	E	$2C_4(z)$	$C_2(z)$	$2C_2(x)$	$2C_2(d)$
A_1	+1	+1	+1	+1	+1
A_2	+1	+1	+1	-1	-1
B_1	+1	-1	+1	+1	-1
B_2	+1	-1	+1	-1	+1
E	+2	0	-2	0	0

Character table and irreducible representations (Irrep)

TopBottom

Irrep	E	$2C_4(z)$	$C_2(z)$	$2C_2(x)$	$2C_2(d)$
A_1	+1	+1	+1	+1	+1
A_2	+1	+1	+1	-1	-1
B_1	+1	-1	+1	+1	-1
B_2	+1	-1	+1	-1	+1
E	+2	0	-2	0	0

Character table and irreducible representations (Irrep)

TopBottom

	Irrep	E	$2C_4(z)$	$C_2(z)$	$2C_2(x)$	$2C_2(d)$
	A_1	+1	+1	+1	+1	+1
+1 ← -1 ←	A_2	+1	+1	+1	-1	-1
	B_1	+1	-1	+1	+1	-1
	B_2	+1	-1	+1	-1	+1
	E	+2	0	-2	0	0

Character table and irreducible representations (Irrep)

	Irrep	E	$2C_4(z)$	$C_2(z)$	$2C_2(x)$	$2C_2(d)$
	A_1	+1	+1	+1	+1	+1
+1 ₊ -1 ₊	A_2	+1	+1	+1	-1	-1
	B_1	+1	-1	+1	+1	-1
	B_2	+1	-1	+1	-1	+1
	E	+2	0	-2	0	0

Character table and irreducible representations (Irrep)

	Irrep	E	$2C_4(z)$	$C_2(z)$	$2C_2(x)$	$2C_2(d)$
	A_1	+1	+1	+1	+1	+1
+1 ₊ -1 ₊	A_2	+1	+1	+1	-1	-1
	B_1	+1	-1	+1	+1	-1
	B_2	+1	-1	+1	-1	+1
	E	+2	0	-2	0	0

Character table and irreducible representations (Irrep)

Character table and irreducible representations (Irrep)

Basis functions

Crystallographic Point Groups

[There are 32 crystallographic point groups in 3D]

		Hermann	-Mauguin					
Crystal family	Crystal system	(full)	(short)	Shubnikov	Schoenflies	Orbitoid	Coxeter	Order
Triclinic		1	1	1	<i>C</i> ₁	11	[]+	1
		1	1	2	$C_i = S_2$	×	[2+,2+]	2
		2	2	2	<i>C</i> ₂	22	[2]+	2
Mon	oclinic	m	m	m	$C_s = C_{1h}$	*	[]	2
		$\frac{2}{m}$	2/m	2:m	C _{2h}	2*	[2,2+]	4
		222	222	2:2	$D_2 = V$	222	[2,2]+	4
Ortho	rhombic	mm2	mm2	$2 \cdot m$	C _{2v}	*22	[2]	4
		$\frac{2}{m}\frac{2}{m}\frac{2}{m}$	mmm	$m \cdot 2:m$	$D_{2h} = V_h$	*222	[2,2]	8
		4	4	4	<i>C</i> ₄	44	[4]+	4
		4	4	Ĩ.	S ₄	2×	[2+,4+]	4
		$\frac{4}{m}$	4/m	4:m	C _{4h}	4*	[2,4 ⁺]	8
Tetra	agonal	422	422	4:2	D ₄	422	[4,2]+	8
		4mm	4mm	$4 \cdot m$	C _{4v}	*44	[4]	8
		42m	42m	$\tilde{4} \cdot m$	$D_{2d} = V_d$	2*2	[2+,4]	8
		$\frac{4}{m}\frac{2}{m}\frac{2}{m}$	4/mmm	$m \cdot 4:m$	D _{4h}	*422	[4,2]	16
	3	3	3	C3	33	[3]+	3	
	Trigonal	3	3	õ	$C_{3i} = S_6$	3×	[2+,6+]	6
		32	32	3:2	D3	322	[3,2]+	6
		3m	3m	$3 \cdot m$	C _{3v}	*33	[3]	6
		$\overline{3}\frac{2}{m}$	3m	$ ilde{6} \cdot m$	D _{3d}	2*3	[2+,6]	12
		6	6	6	<i>C</i> ₆	66	[6]+	6
Hexagonal		6	6	3:m	C _{3h}	3*	[2,3 ⁺]	6
		$\frac{6}{m}$	6/m	6:m	C _{6h}	6*	[2,6 ⁺]	12
	Hexagonal	622	622	6:2	D ₆	622	[6,2]+	12
		6mm	6mm	$6 \cdot m$	C _{6v}	*66	[6]	12
		6m2	6m2	$m \cdot 3:m$	D _{3h}	*322	[3,2]	12
		$\frac{6}{m}\frac{2}{m}\frac{2}{m}$	6/mmm	$m \cdot 6:m$	D _{6h}	*622	[6,2]	24
		23	23	3/2	Т	332	[3,3]+	12
		$\frac{2}{m}\overline{3}$	m3	$ ilde{6}/2$	T _h	3*2	[3+,4]	24
C	ubic	432	432	3/4	0	432	[4,3]+	24
		43m	43m	$3/ ilde{4}$	T _d	*332	[3,3]	24
		$\frac{4}{m}\overline{3}\frac{2}{m}$	m3m	$ ilde{6}/4$	O _h	*432	[4,3]	48

C_n: n-fold rotation C_{nh}: C_n + \perp mirror C_{nv}: C_n + n || mirrors S_n: n-fold rotation-reflection D_n: n-fold rotations + n 2-fold \perp rotations D_{nh}: D_n + \perp mirror D_{nd}: D_n + n || mirror T: Tetrahedron [h: with inversion, d: with improper rotations] O: Octahedron [h: with inversion]

Character Tables for Point Groups used in Chemistry

C_{3v}	Е	2 C ₃	3σ _v
A ₁	1	1	1
A ₂	1	1	-1
E	2	-1	0

Symmetry of Rotations and Cartesian products

		Rot Tr=p -d g i i i i i i i
A ₁	p+d+2f+2g+2h+3i 3j+3k+4l+4m	z, z^2 , $x(x^2-3y^2)$, z^3 , $xz(x^2-3y^2)$, z^4 , $xz^2(x^2-3y^2)$, z^5 , $x^2(x^2-3y^2)^2-y^2(3x^2-y^2)^2$, $xz^3(x^2-3y^2)$, z^6
A ₂	R+f+g+h+2i 2j+2k+3l+3m	$R_{z}, y(3x^{2}-y^{2}), yz(3x^{2}-y^{2}), xy(x^{2}-3y^{2})(3x^{2}-y^{2}), yz^{3}(3x^{2}-y^{2})$
Е	R+p+2d+2f+3g+4h+4i 5j+6k+6l+7m	$\{\mathbf{R}_{x}, \mathbf{R}_{y}\}, \{x, y\}, \{x^{2}-y^{2}, xy\}, \{xz, yz\}, \{z(x^{2}-y^{2}), xyz\}, \{xz^{2}, yz^{2}\}, \{(x^{2}-y^{2})^{2}-4x^{2}y^{2}, xy(x^{2}-y^{2})\}, \{z^{2}(x^{2}-y^{2}), xyz^{2}\}, \{xz^{3}, yz^{3}\}, \{x(x^{2}-(5+2\sqrt{5})y^{2})(x^{2}-(5-2\sqrt{5})y^{2}), y((5+2\sqrt{5})x^{2}-y^{2})((5-2\sqrt{5})x^{2}-y^{2})\}, \{z((x^{2}-y^{2})^{2}-4x^{2}y^{2}), xyz(x^{2}-y^{2})\}, \{z^{3}(x^{2}-y^{2}), xyz^{3}\}, \{xz^{4}, yz^{4}\}, \{xz(x^{2}-(5+2\sqrt{5})y^{2})(x^{2}-(5-2\sqrt{5})y^{2}), yz((5+2\sqrt{5})x^{2}-y^{2})((5-2\sqrt{5})x^{2}-y^{2})\}, \{z^{2}((x^{2}-y^{2})^{2}-4x^{2}y^{2}), xyz^{2}(x^{2}-y^{2})\}, \{z^{4}(x^{2}-y^{2}), xyz^{4}\}, \{xz^{5}, yz^{5}\}$
		Rot Tr=p -d g h i

http://gernot-katzers-spice-pages.com/character_tables/

Character Tables for Point Groups used in Chemistry

C_{3v}	Е	2 C ₃	3σ _v
A ₁	1	1	1
A ₂	1	1	-1
Е	2	-1	0

Note: For crystallographic point groups only (32) groups with rotation axes of order n=1,2,3,4,6 are allowed!

Symmetry of Rotations and Cartesian products

		Rot Tr=p f g i i
A ₁	p+d+2f+2g+2h+3i 3j+3k+4l+4m	z, z^2 , $x(x^2-3y^2)$, z^3 , $xz(x^2-3y^2)$, z^4 , $xz^2(x^2-3y^2)$, z^5 , $x^2(x^2-3y^2)^2-y^2(3x^2-y^2)^2$, $xz^3(x^2-3y^2)$, z^6
A ₂	R+f+g+h+2i 2j+2k+3l+3m	$R_{z}, y(3x^{2}-y^{2}), yz(3x^{2}-y^{2}), yz^{2}(3x^{2}-y^{2}), xy(x^{2}-3y^{2})(3x^{2}-y^{2}), yz^{3}(3x^{2}-y^{2})$
Е	R+p+2d+2f+3g+4h+4i 5j+6k+6l+7m	$\{\mathbf{R}_{x}, \mathbf{R}_{y}\}, \{x, y\}, \{x^{2}-y^{2}, xy\}, \{xz, yz\}, \{z(x^{2}-y^{2}), xyz\}, \{xz^{2}, yz^{2}\}, \{(x^{2}-y^{2})^{2}-4x^{2}y^{2}, xy(x^{2}-y^{2})\}, \{z^{2}(x^{2}-y^{2}), xyz^{2}\}, \{xz^{3}, yz^{3}\}, \{x(x^{2}-(5+2\sqrt{5})y^{2})(x^{2}-(5-2\sqrt{5})x^{2}-y^{2})((5-2\sqrt{5})x^{2}-y^{2})\}, \{z((x^{2}-y^{2})^{2}-4x^{2}y^{2}), xyz(x^{2}-y^{2})\}, \{z^{3}(x^{2}-y^{2}), xyz^{3}\}, \{xz^{4}, yz^{4}\}, \{xz(x^{2}-(5+2\sqrt{5})y^{2})(x^{2}-(5-2\sqrt{5})y^{2}), yz((5+2\sqrt{5})x^{2}-y^{2})((5-2\sqrt{5})x^{2}-y^{2})\}, \{z^{2}((x^{2}-y^{2})^{2}-4x^{2}y^{2}), xyz^{2}(x^{2}-y^{2}), xyz^{3}\}, \{xz^{4}, yz^{4}\}, \{xz(x^{2}-(5+2\sqrt{5})y^{2})(x^{2}-(5-2\sqrt{5})y^{2}), yz((5+2\sqrt{5})x^{2}-y^{2})((5-2\sqrt{5})x^{2}-y^{2})\}, \{z^{2}((x^{2}-y^{2})^{2}-4x^{2}y^{2}), xyz^{2}(x^{2}-y^{2})\}, \{z^{4}(x^{2}-y^{2}), xyz^{4}\}, \{xz^{5}, yz^{5}\}$
	1	Rot Tr=p f i i

http://gernot-katzers-spice-pages.com/character_tables/

 C_n C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_{10} C_{11} C_{12} C_{13} C_{14} C_{15} C_{16} C_{17} C_{18} C_{19} C_{20} ($\mathbf{C_{nv}} \quad \mathbf{C_{2v}} \ \mathbf{C_{3v}} \ \mathbf{C_{4v}} \ \mathbf{C_{5v}} \ \mathbf{C_{6v}} \ \mathbf{C_{7v}} \ \mathbf{C_{8v}} \ \mathbf{C_{9v}} \ \mathbf{C_{10v}} \ \mathbf{C_{11v}} \ \mathbf{C_{12v}} \ \mathbf{C_{13v}} \ \mathbf{C_{14v}} \ \mathbf{C_{15v}} \ \mathbf{C_{16v}} \ \mathbf{C_{17v}} \ \mathbf{C_{18v}} \ \mathbf{C_{19v}} \ \mathbf{C_{20v}} \ \mathbf{C_{10v}} \ \mathbf{C_{11v}} \ \mathbf{C_{12v}} \ \mathbf{C_{14v}} \ \mathbf{C_{15v}} \ \mathbf{C_{16v}} \ \mathbf{C_{17v}} \ \mathbf{C_{18v}} \ \mathbf{C_{19v}} \ \mathbf{C_{20v}} \ \mathbf{C_{10v}} \ \mathbf{C_{11v}} \$ $C_{nh} C_s C_{2h} C_{3h} C_{4h} C_{5h} C_{6h} C_{7h} C_{8h} C_{9h} C_{10h} C_{11h} C_{12h} C_{13h} C_{14h} C_{15h} C_{16h} C_{17h} C_{18h} C_{19h} C_{20h} (C_{10h} C_{10h} C_{10h}$ D_n D_2 D_3 D_4 D_5 D_6 D_7 D_8 D_9 D_{10} D_{11} D_{12} D_{13} D_{14} D_{15} D_{16} D_{17} D_{18} D_{19} D_{20} D_{10} D_{10} DD_{nh} D_{2h} D_{3h} D_{4h} D_{5h} D_{6h} D_{7h} D_{8h} D_{9h} D_{10h} D_{11h} D_{12h} D_{13h} D_{14h} D_{15h} D_{16h} D_{17h} D_{18h} D_{19h} D_{20h} J D_{nd} $D_{2d} D_{3d} D_{4d} D_{5d} D_{6d} D_{7d} D_{8d} D_{9d} D_{10d} D_{11d} D_{12d} D_{13d} D_{14d} D_{15d} D_{16d} D_{17d} D_{18d} D_{19d} D_{20d} D_{20d} D_{10d} D_{1$ Ci S₆ **S**₁₆ S₂₀ S_n S₄ S₈ **S**₁₀ **S**₁₂ **S**₁₄ S₁₈ T T_d T_h O O_h isometric I I_h Schoenflies symbol:

 C_n C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_{10} C_{11} C_{12} C_{13} C_{14} C_{15} C_{16} C_{17} C_{18} C_{19} C_{20} ($\mathbf{C_{nv}} \quad \mathbf{C_{2v}} \ \mathbf{C_{3v}} \ \mathbf{C_{4v}} \ \mathbf{C_{5v}} \ \mathbf{C_{6v}} \ \mathbf{C_{7v}} \ \mathbf{C_{8v}} \ \mathbf{C_{9v}} \ \mathbf{C_{10v}} \ \mathbf{C_{11v}} \ \mathbf{C_{12v}} \ \mathbf{C_{13v}} \ \mathbf{C_{14v}} \ \mathbf{C_{15v}} \ \mathbf{C_{16v}} \ \mathbf{C_{17v}} \ \mathbf{C_{18v}} \ \mathbf{C_{19v}} \ \mathbf{C_{20v}} \ \mathbf{C_{10v}} \ \mathbf{C_{11v}} \ \mathbf{C_{12v}} \ \mathbf{C_{14v}} \ \mathbf{C_{15v}} \ \mathbf{C_{16v}} \ \mathbf{C_{17v}} \ \mathbf{C_{18v}} \ \mathbf{C_{19v}} \ \mathbf{C_{20v}} \ \mathbf{C_{10v}} \ \mathbf{C_{11v}} \$ $C_{nh} C_s C_{2h} C_{3h} C_{4h} C_{5h} C_{6h} C_{7h} C_{8h} C_{9h} C_{10h} C_{11h} C_{12h} C_{13h} C_{14h} C_{15h} C_{16h} C_{17h} C_{18h} C_{19h} C_{20h} (C_{10h} C_{10h} C_{10h}$ D_n D_2 D_3 D_4 D_5 D_6 D_7 D_8 D_9 D_{10} D_{11} D_{12} D_{13} D_{14} D_{15} D_{16} D_{17} D_{18} D_{19} D_{20} D_{10} D_{10} D $\mathbf{D}_{nh} \qquad \mathbf{D}_{2h} \mathbf{D}_{3h} \mathbf{D}_{4h} \mathbf{D}_{5h} \mathbf{D}_{6h} \mathbf{D}_{7h} \mathbf{D}_{8h} \mathbf{D}_{9h} \mathbf{D}_{10h} \mathbf{D}_{11h} \mathbf{D}_{12h} \mathbf{D}_{13h} \mathbf{D}_{14h} \mathbf{D}_{15h} \mathbf{D}_{16h} \mathbf{D}_{17h} \mathbf{D}_{18h} \mathbf{D}_{19h} \mathbf{D}_{20h} \mathbf{J}_{10h} \mathbf{D}_{11h} \mathbf{D}_{12h} \mathbf{D}_{13h} \mathbf{D}_{14h} \mathbf{D}_{15h} \mathbf{D}_{16h} \mathbf{D}_{17h} \mathbf{D}_{18h} \mathbf{D}_{19h} \mathbf{D}_{20h} \mathbf{J}_{10h} \mathbf{D}_{11h} \mathbf{D}_{12h} \mathbf{D}_{11h} \mathbf{D}_{12h} \mathbf{D}_{11h} \mathbf{D}_{12h} \mathbf{D}_{11h} \mathbf{D}_{12h} \mathbf{D}_{11h} \mathbf{D}_$ D_{nd} $D_{2d} D_{3d} D_{4d} D_{5d} D_{6d} D_{7d} D_{8d} D_{9d} D_{10d} D_{11d} D_{12d} D_{13d} D_{14d} D_{15d} D_{16d} D_{17d} D_{18d} D_{19d} D_{20d} D_{20d} D_{10d} D_{1$ Ci **S**₆ **S**₁₆ S₂₀ S_n S₄ S₈ **S**₁₀ **S**₁₂ **S**₁₄ S₁₈ T T_d T_h O O_h isometric I I_h Schoenflies symbol:

 C_n C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_{10} C_{11} C_{12} C_{13} C_{14} C_{15} C_{16} C_{17} C_{18} C_{19} C_{20} C_{20} $\mathbf{C_{nv}} \quad \mathbf{C_{2v}} \ \mathbf{C_{3v}} \ \mathbf{C_{4v}} \ \mathbf{C_{5v}} \ \mathbf{C_{6v}} \ \mathbf{C_{7v}} \ \mathbf{C_{8v}} \ \mathbf{C_{9v}} \ \mathbf{C_{10v}} \ \mathbf{C_{11v}} \ \mathbf{C_{12v}} \ \mathbf{C_{13v}} \ \mathbf{C_{14v}} \ \mathbf{C_{15v}} \ \mathbf{C_{16v}} \ \mathbf{C_{17v}} \ \mathbf{C_{18v}} \ \mathbf{C_{19v}} \ \mathbf{C_{20v}} \ \mathbf{C_{10v}} \ \mathbf{C_{11v}} \ \mathbf{C_{12v}} \ \mathbf{C_{14v}} \ \mathbf{C_{15v}} \ \mathbf{C_{16v}} \ \mathbf{C_{17v}} \ \mathbf{C_{18v}} \ \mathbf{C_{19v}} \ \mathbf{C_{20v}} \ \mathbf{C_{10v}} \ \mathbf{C_{11v}} \$ $C_{nh} C_s C_{2h} C_{3h} C_{4h} C_{5h} C_{6h} C_{7h} C_{8h} C_{9h} C_{10h} C_{11h} C_{12h} C_{13h} C_{14h} C_{15h} C_{16h} C_{17h} C_{18h} C_{19h} C_{20h} (C_{10h} C_{10h} C_{10h}$ D_n D_2 D_3 D_4 D_5 D_6 D_7 D_8 D_9 D_{10} D_{11} D_{12} D_{13} D_{14} D_{15} D_{16} D_{17} D_{18} D_{19} D_{20} D_{10} D_{10} DD_{2h} D_{3h} D_{4h} D_{5h} D_{6h} D_{7h} D_{8h} D_{9h} D_{10h} D_{11h} D_{12h} D_{13h} D_{14h} D_{15h} D_{16h} D_{17h} D_{18h} D_{19h} D_{20h} J D_{nh} D_{nd} $D_{2d} D_{3d} D_{4d} D_{5d} D_{6d} D_{7d} D_{8d} D_{9d} D_{10d} D_{11d} D_{12d} D_{13d} D_{14d} D_{15d} D_{16d} D_{17d} D_{18d} D_{19d} D_{20d} D_{20d} D_{10d} D_{1$ Ci $S_6 S_8$ **S**₁₆ S₂₀ S_n S₄ **S**₁₀ **S**₁₂ S₁₄ S₁₈ T T_d T_h O O_h isometric I I_h Schoenflies symbol:

 C_n C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_{10} C_{11} C_{12} C_{13} C_{14} C_{15} C_{16} C_{17} C_{18} C_{19} C_{20} C_{20} $\mathbf{C_{nv}} \quad \mathbf{C_{2v}} \ \mathbf{C_{3v}} \ \mathbf{C_{4v}} \ \mathbf{C_{5v}} \ \mathbf{C_{6v}} \ \mathbf{C_{7v}} \ \mathbf{C_{8v}} \ \mathbf{C_{9v}} \ \mathbf{C_{10v}} \ \mathbf{C_{11v}} \ \mathbf{C_{12v}} \ \mathbf{C_{13v}} \ \mathbf{C_{14v}} \ \mathbf{C_{15v}} \ \mathbf{C_{16v}} \ \mathbf{C_{17v}} \ \mathbf{C_{18v}} \ \mathbf{C_{19v}} \ \mathbf{C_{20v}} \ \mathbf{C_{10v}} \ \mathbf{C_{11v}} \ \mathbf{C_{12v}} \ \mathbf{C_{14v}} \ \mathbf{C_{15v}} \ \mathbf{C_{16v}} \ \mathbf{C_{17v}} \ \mathbf{C_{18v}} \ \mathbf{C_{19v}} \ \mathbf{C_{20v}} \ \mathbf{C_{10v}} \ \mathbf{C_{11v}} \$ $C_{nh} C_s C_{2h} C_{3h} C_{4h} C_{5h} C_{6h} C_{7h} C_{8h} C_{9h} C_{10h} C_{11h} C_{12h} C_{13h} C_{14h} C_{15h} C_{16h} C_{17h} C_{18h} C_{19h} C_{20h} (C_{10h} C_{10h} C_{10h}$ D_n D_2 D_3 D_4 D_5 D_6 D_7 D_8 D_9 D_{10} D_{11} D_{12} D_{13} D_{14} D_{15} D_{16} D_{17} D_{18} D_{19} D_{20} D_{10} D_{10} DD_{2h} D_{3h} D_{4h} D_{5h} D_{6h} D_{7h} D_{8h} D_{9h} D_{10h} D_{11h} D_{12h} D_{13h} D_{14h} D_{15h} D_{16h} D_{17h} D_{18h} D_{19h} D_{20h} J D_{nh} D_{nd} $D_{2d} D_{3d} D_{4d} D_{5d} D_{6d} D_{7d} D_{8d} D_{9d} D_{10d} D_{11d} D_{12d} D_{13d} D_{14d} D_{15d} D_{16d} D_{17d} D_{18d} D_{19d} D_{20d} D_{20d} D_{10d} D_{1$ Ci S₆ S₈ **S**₁₆ S_{20} S_n S₄ **S**₁₀ **S**₁₂ S₁₄ S₁₈ T T_d T_h O O_h isometric I I_h Schoenflies symbol:

 C_n C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_{10} C_{11} C_{12} C_{13} C_{14} C_{15} C_{16} C_{17} C_{18} C_{19} C_{20} ($\mathbf{C_{nv}} \quad \mathbf{C_{2v}} \ \mathbf{C_{3v}} \ \mathbf{C_{4v}} \ \mathbf{C_{5v}} \ \mathbf{C_{6v}} \ \mathbf{C_{7v}} \ \mathbf{C_{8v}} \ \mathbf{C_{9v}} \ \mathbf{C_{10v}} \ \mathbf{C_{11v}} \ \mathbf{C_{12v}} \ \mathbf{C_{13v}} \ \mathbf{C_{14v}} \ \mathbf{C_{15v}} \ \mathbf{C_{16v}} \ \mathbf{C_{17v}} \ \mathbf{C_{18v}} \ \mathbf{C_{19v}} \ \mathbf{C_{20v}} \ \mathbf{C_{10v}} \ \mathbf{C_{11v}} \ \mathbf{C_{12v}} \ \mathbf{C_{14v}} \ \mathbf{C_{15v}} \ \mathbf{C_{16v}} \ \mathbf{C_{17v}} \ \mathbf{C_{18v}} \ \mathbf{C_{19v}} \ \mathbf{C_{20v}} \ \mathbf{C_{10v}} \ \mathbf{C_{11v}} \$ $C_{nh} C_s C_{2h} C_{3h} C_{4h} C_{5h} C_{6h} C_{7h} C_{8h} C_{9h} C_{10h} C_{11h} C_{12h} C_{13h} C_{14h} C_{15h} C_{16h} C_{17h} C_{18h} C_{19h} C_{20h} (C_{10h} C_{10h} C_{10h}$ D_n D_2 D_3 D_4 D_5 D_6 D_7 D_8 D_9 D_{10} D_{11} D_{12} D_{13} D_{14} D_{15} D_{16} D_{17} D_{18} D_{19} D_{20} D_{10} D_{10} D $\mathbf{D}_{nh} \qquad \mathbf{D}_{2h} \mathbf{D}_{3h} \mathbf{D}_{4h} \mathbf{D}_{5h} \mathbf{D}_{6h} \mathbf{D}_{7h} \mathbf{D}_{8h} \mathbf{D}_{9h} \mathbf{D}_{10h} \mathbf{D}_{11h} \mathbf{D}_{12h} \mathbf{D}_{13h} \mathbf{D}_{14h} \mathbf{D}_{15h} \mathbf{D}_{16h} \mathbf{D}_{17h} \mathbf{D}_{18h} \mathbf{D}_{19h} \mathbf{D}_{20h} \mathbf{J}_{10h} \mathbf{D}_{11h} \mathbf{D}_{12h} \mathbf{D}_{13h} \mathbf{D}_{14h} \mathbf{D}_{15h} \mathbf{D}_{16h} \mathbf{D}_{17h} \mathbf{D}_{18h} \mathbf{D}_{19h} \mathbf{D}_{20h} \mathbf{J}_{10h} \mathbf{D}_{11h} \mathbf{D}_{12h} \mathbf{D}_{11h} \mathbf{D}_{12h} \mathbf{D}_{11h} \mathbf{D}_{12h} \mathbf{D}_{11h} \mathbf{D}_{12h} \mathbf{D}_{11h} \mathbf{D}_$ D_{nd} $D_{2d} D_{3d} D_{4d} D_{5d} D_{6d} D_{7d} D_{8d} D_{9d} D_{10d} D_{11d} D_{12d} D_{13d} D_{14d} D_{15d} D_{16d} D_{17d} D_{18d} D_{19d} D_{20d} D_{20d} D_{10d} D_{1$ Ci $S_6 S_8$ **S**₁₆ S_{20} Sn **S**₄ **S**₁₀ **S**₁₂ S₁₄ S₁₈ T T_d T_h O O_h isometric I I_h Schoenflies symbol:

What does this all have to do with SC order parameters?

From fermionic anti-symmetry:

$$\hat{\Delta}(\mathbf{k}) = - \hat{\Delta}^T (-\mathbf{k})$$

 $\Delta_{\alpha\beta}(\mathbf{k}) \sim \left\langle c_{-\mathbf{k}\alpha} c_{\mathbf{k}\beta} \right\rangle$

From fermionic anti-symmetry: $\hat{\Delta}(\mathbf{k}) = -\hat{\Delta}^T(-\mathbf{k})$ $\Delta_{\alpha\beta}(\mathbf{k}) \sim \langle c_{-\mathbf{k}\alpha}c_{\mathbf{k}\beta} \rangle$

If inversion is a symmetry: $P\hat{\Delta}(\mathbf{k})P^{-1} = \hat{\Delta}(-\mathbf{k}) = \pm \Delta(\mathbf{k})$

[Assumption: does not modify the internal DOFs]

From fermionic anti-symmetry: $\hat{\Delta}(\mathbf{k}) = -\hat{\Delta}^T(-\mathbf{k})$ $\Delta_{\alpha\beta}(\mathbf{k}) \sim \langle c_{-\mathbf{k}\alpha}c_{\mathbf{k}\beta} \rangle$

If inversion is a symmetry: $P\hat{\Delta}(\mathbf{k})P^{-1} = \hat{\Delta}(-\mathbf{k}) = \pm \Delta(\mathbf{k})$

[Assumption: does not modify the internal DOFs]

Two decoupled sectors of SC order parameters:

$$\hat{\Delta}_{E}(\mathbf{k}) = -\hat{\Delta}_{E}^{T}(-\mathbf{k}) = -\hat{\Delta}_{E}^{T}(\mathbf{k})$$

..... $(i\sigma_{2})$
 $\sim |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle$
Spin Singlet
Even Parity

 $\hat{\Delta}_{O}(\mathbf{k}) = -\hat{\Delta}_{O}^{T}(-\mathbf{k}) = \hat{\Delta}_{O}^{T}(\mathbf{k})$ $\sigma_3 \propto \sigma_1(i\sigma_2)$ $\sigma_0 \propto \sigma_2(i\sigma_2)$ • $\sigma_1 \propto \sigma_3(i\sigma_2)$ $\sim |\uparrow\uparrow\rangle - |\downarrow\downarrow\rangle$ $\sim |\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle$ $\sim |\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle$ **Spin triplet Odd Parity**

From fermionic anti-symmetry:

$$\hat{\Delta}(\mathbf{k}) = -\hat{\Delta}^T(-\mathbf{k})$$

 $\Delta_{\alpha\beta}(\mathbf{k}) \sim \left\langle c_{-\mathbf{k}\alpha} c_{\mathbf{k}\beta} \right\rangle$

For a generic symmetry G:

$$D(G)\hat{\Delta}(\mathbf{k})D(G)^{-1} = \hat{\Delta}[D_{3D}^{-1}(G)\mathbf{k}] = \pm \Delta(\mathbf{k})$$

From fermionic anti-symmetry:

$$\hat{\Delta}(\mathbf{k}) = - \hat{\Delta}^T (-\mathbf{k})$$

 $\Delta_{\alpha\beta}(\mathbf{k}) \sim \langle c_{-\mathbf{k}\alpha} c_{\mathbf{k}\beta} \rangle$

For a generic symmetry G:

$$D(G)\hat{\Delta}(\mathbf{k})D(G)^{-1} = \hat{\Delta}[D_{3D}^{-1}(G)\mathbf{k}] = \pm \Delta(\mathbf{k})$$

Can classify the order parameter according to its properties under a given symmetry operation (as even/odd in analogy to the parity)

PreservesBreaksSymmetrySymmetry

From fermionic anti-symmetry:

$$\hat{\Delta}(\mathbf{k}) = -\hat{\Delta}^T(-\mathbf{k})$$

 $\Delta_{\alpha\beta}(\mathbf{k}) \sim \langle c_{-\mathbf{k}\alpha} c_{\mathbf{k}\beta} \rangle$

For a generic symmetry G:

$$D(G)\hat{\Delta}(\mathbf{k})D(G)^{-1} = \hat{\Delta}[D_{3D}^{-1}(G)\mathbf{k}] = \pm \Delta(\mathbf{k})$$

Can classify the order parameter according to its properties under a given symmetry operation (as even/odd in analogy to the parity)

Note: Now there can be multiple symmetry operations present! [Irreducible representations are now useful!]

+1

-1

Basis functions

Conventional SC: (almost always) Fully gapped!

Basis functions

Special scenario I: 2D Irrep and Nematicity

Gap

1D Irrep

...preserves the point group symmetry.

Gap amplitude

...breaks the point group symmetry.

Special scenario I: 2D Irrep and Nematicity

+

2D Irrep

... preserves the point group symmetry.

...breaks the point group symmetry.

Special scenario I: 2D Irrep and Nematicity

Gap

1D Irrep

2D Irrep

...preserves the point group symmetry.

...breaks the point group symmetry.

Cu_xBi₂Se₃

[NEMATIC SC]

What are the observable consequences?

+

- Distinct anisotropy in C/T and H_{c2}
- Associated lattice deformations

Gap amplitude

Special scenario II: 2D Irrep and TRSB

A complex superposition of the two components in a 2D irrep usually lifts the nodes (generally more stable):

Special scenario II: 2D Irrep and TRSB

A complex superposition of the two components in a 2D irrep usually lifts the nodes (generally more stable):

Special scenario II: 2D Irrep and TRSB

A complex superposition of the two components in a 2D irrep usually lifts the nodes (generally more stable):

Note: Isotropic Gap, but certainly unconventional!

Special scenario II: 2D Irrep and TRSB

A complex superposition of the two components in a 2D irrep usually lifts the nodes (generally more stable):

Note: Isotropic Gap, but certainly unconventional!

What are the observable consequences?

- Polar Kerr Effect
- Muon Spin Relaxation

Sr₂RuO₄ $(p_{p_{d}}, 0)$ $(p_{d}, 0)$ $(p_{d}, 0)$

J. Xia et al., Phys. Rev. Lett. 97, 167002 (2006)

$D_{4h} = D_4 + inversion$

$\mathbf{D}_{4\mathbf{h}}_{h=16}$	E	2 C ₄	С ₂	$2C_2^\prime$	$2 C_2^{\prime\prime}$	i	2 S ₄	σ _h	2 σ _v	2 σ _d
A _{1g}	1	1	1	1	1	1	1	1	1	1
A _{2g}	1	1	1	-1	-1	1	1	1	-1	-1
B _{1g}	1	-1	1	1	-1	1	-1	1	1	-1
B _{2g}	1	-1	1	-1	1	1	-1	1	-1	1
Eg	2	0	-2	0	0	2	0	-2	0	0
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A _{2u}	1	1	1	-1	-1	-1	-1	-1	1	1
B _{1u}	1	-1	1	1	-1	-1	1	-1	-1	1
B _{2u}	1	-1	1	-1	1	-1	1	-1	1	-1
Eu	2	0	-2	0	0	-2	0	2	0	0

$D_{4h} = D_4 + inversion$

$\mathbf{D}_{4\mathbf{h}}_{h=16}$	Ε	2 C ₄	С ₂	$2C_2^\prime$	$2 C_2^{\prime\prime}$	i	2 S ₄	σ _h	2 σ _v	$2\sigma_{d}$
A _{1g}	1	1	1	1	1	1	1	1	1	1
A _{2g}	1	1	1	-1	-1	1	1	1	-1	-1
B _{1g}	1	-1	1	1	-1	1	-1	1	1	-1
B _{2g}	1	-1	1	-1	1	1	-1	1	-1	1
Eg	2	0	-2	0	0	2	0	-2	0	0
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A _{2u}	1	1	1	-1	-1	-1	-1	-1	1	1
B _{1u}	1	-1	1	1	-1	-1	1	-1	-1	1
B _{2u}	1	-1	1	-1	1	-1	1	-1	1	-1
Eu	2	0	-2	0	0	-2	0	2	0	0

Symmetry of Rotations and Cartesian products

		Rot Tr=p -d g i
A _{1g}	d+2g+2i 3k+3m	$z^{2}, (x^{2}-y^{2})^{2}-4x^{2}y^{2}, z^{4}, z^{2}((x^{2}-y^{2})^{2}-4x^{2}y^{2}), z^{6}$
A _{2g}	R+g+i 2k+2m	$R_z, xy(x^2-y^2), xyz^2(x^2-y^2)$
B _{1g}	d+g+2i 2k+3m	$x^{2}-y^{2}, z^{2}(x^{2}-y^{2}), x^{2}(x^{2}-3y^{2})^{2}-y^{2}(3x^{2}-y^{2})^{2}, z^{4}(x^{2}-y^{2})$
B _{2g}	d+g+2i 2k+3m	$xy, xyz^2, xy(x^2-3y^2)(3x^2-y^2), xyz^4$
Eg	R+d+2g+3i 4k+5m	$\{\mathbf{R}_{x}, \mathbf{R}_{y}\}, \{xz, yz\}, \{xz(x^{2}-3y^{2}), yz(3x^{2}-y^{2})\}, \{xz^{3}, yz^{3}\}, \{xz(x^{2}-(5+2\sqrt{5})y^{2})(x^{2}-(5-2\sqrt{5})y^{2}), yz((5+2\sqrt{5})x^{2}-y^{2})((5-2\sqrt{5})x^{2}-y^{2})\}, \{xz^{3}(x^{2}-3y^{2}), yz^{3}(3x^{2}-y^{2})\}, \{xz^{5}, yz^{5}\}$
A _{1u}	h j+21	
		$xy_{\mathcal{L}}(x - y)$
A _{2u}	p+f+2h 2j+31	$z, z^{3}, z((x^{2}-y^{2})^{2}-4x^{2}y^{2}), z^{5}$
A _{2u} B _{1u}	p+f+2h 2j+31 f+h 2j+21	$z, z^{3}, z((x^{2}-y^{2})^{2}-4x^{2}y^{2}), z^{5}$
A _{2u} B _{1u} B _{2u}	p+f+2h 2j+31 f+h 2j+21 f+h 2j+21	$x_{2}(x^{2}-y^{2}) = 4x^{2}y^{2}, z^{5}$
A _{2u} B _{1u} B _{2u} E _u	p+f+2h 2j+31 f+h 2j+21 f+h 2j+21 p+2f+3h 4j+51	$x_{1}x_{2}x_{1}y_{2}y_{2}x_{3}z_{3}(x^{2}-y^{2})^{2}-4x^{2}y^{2}, z^{5}$ $x_{2}, z^{3}, z((x^{2}-y^{2})^{2}-4x^{2}y^{2}), z^{5}$ $x_{2}, x_{2}y^{3}$ $x_{2}, x_{2}y^{3}$ $z_{2}(x^{2}-y^{2}), z^{3}(x^{2}-y^{2})$ $z_{3}(x^{2}-y^{2})$ $z_{3}(x^{2}-y^{2}), z^{3}(x^{2}-y^{2})$ $z_{3}(x^{2}-y^{2}), z^{3}(x^{2}-y^{2})$ $z_{3}(x^{2}-y^{2}), z^{3}(x^{2}-y^{2}), z^{3}(x^{2}-y^{2}-y^{2}), z^{3}(x^{2}-y^{2}-y^{2}), z^{3}(x^{2}-y^{2}-$

$D_{4h} = D_4 + inversion$

D 4h _{<i>h</i>=16}	Ε	2 C ₄	с ₂	$2C_2^\prime$	$2 C_2^{\prime\prime}$	i	2 S ₄	σ _h	2 σ _v	2 σ _d
A _{1g}	1	1	1	1	1	1	1	1	1	1
A _{2g}	1	1	1	-1	-1	1	1	1	-1	-1
B _{1g}	1	-1	1	1	-1	1	-1	1	1	-1
B _{2g}	1	-1	1	-1	1	1	-1	1	-1	1
Eg	2	0	-2	0	0	2	0	-2	0	0
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A _{2u}	1	1	1	-1	-1	-1	-1	-1	1	1
B _{1u}	1	-1	1	1	-1	-1	1	-1	-1	1
B _{2u}	1	-1	1	-1	1	-1	1	-1	1	-1
Eu	2	0	-2	0	0	-2	0	2	0	0

Symmetry of Rotations and Cartesian products

Only gives us information about the k-dependent part of the gap function.

A _{1g}	d+2g+2i 3k+3m	$z^{2}, (x^{2}-y^{2})^{2}-4x^{2}y^{2}, z^{4}, z^{2}((x^{2}-y^{2})^{2}-4x^{2}y^{2}), z^{6}$
A _{2g}	R+g+i 2k+2m	$R_z, xy(x^2-y^2), xyz^2(x^2-y^2)$
B _{1g}	d+g+2i 2k+3m	$x^{2}-y^{2}, z^{2}(x^{2}-y^{2}), x^{2}(x^{2}-3y^{2})^{2}-y^{2}(3x^{2}-y^{2})^{2}, z^{4}(x^{2}-y^{2})$
B _{2g}	d+g+2i 2k+3m	$xy, xyz^2, xy(x^2-3y^2)(3x^2-y^2), xyz^4$
Eg	R+d+2g+3i 4k+5m	$\{\mathbf{R}_{x}, \mathbf{R}_{y}\}, \{xz, yz\}, \{xz(x^{2}-3y^{2}), yz(3x^{2}-y^{2})\}, \{xz^{3}, yz^{3}\}, \{xz(x^{2}-(5+2\sqrt{5})y^{2})(x^{2}-(5-2\sqrt{5})y^{2}), yz((5+2\sqrt{5})x^{2}-y^{2})((5-2\sqrt{5})x^{2}-y^{2})\}, \{xz^{3}(x^{2}-3y^{2}), yz^{3}(3x^{2}-y^{2})\}, \{xz^{5}, yz^{5}\}$
A _{1u}	h j+21	xyz(x ² -y ²)
A _{2u}	p+f+2h 2j+31	z, z^3 , $z((x^2-y^2)^2-4x^2y^2)$, z^5
B _{1u}	f+h 2j+21	xyz, xyz ³
B _{2u}	f+h 2j+21	$z(x^2-y^2), z^3(x^2-y^2)$
Eu	p+2f+3h 4j+51	$ \{x, y\}, \{x(x^2-3y^2), y(3x^2-y^2)\}, \{xz^2, yz^2\}, \{x(x^2-(5+2\sqrt{5})y^2)(x^2-(5-2\sqrt{5})y^2), y((5+2\sqrt{5})x^2-y^2)((5-2\sqrt{5})x^2-y^2)\}, \{xz^2(x^2-3y^2), yz^2(3x^2-y^2)\}, \{xz^4, yz^4\} $
		Rot Tr=p - d g h i i

Phenomenological theory of unconventional superconductivity

Manfred Sigrist and Kazuo Ueda Rev. Mod. Phys. **63**, 239 – Published 1 April 1991

Irreducible representation Γ	Basis function
$ \begin{array}{c} \Gamma_{1}^{+} \\ \Gamma_{2}^{+} \\ \Gamma_{3}^{+} \\ \Gamma_{4}^{+} \\ \Gamma_{5}^{+} \end{array} $	(a) $\psi(\Gamma_1^+;\mathbf{k}) = 1, k_x^2 + k_y^2, k_z^2$ $\psi(\Gamma_2^+;\mathbf{k}) = k_x k_y (k_x^2 - k_y^2)$ $\psi(\Gamma_3^+;\mathbf{k}) = k_x^2 - k_y^2$ $\psi(\Gamma_4^+;\mathbf{k}) = k_x k_y$ $\psi(\Gamma_5^+,1;\mathbf{k}) = k_x k_z$ $\psi(\Gamma_5^+,2;\mathbf{k}) = k_y k_z$
Γ_1^- Γ_2^- Γ_3^- Γ_4^- Γ_5^-	(b) $\mathbf{d}(\Gamma_{1}^{-};\mathbf{k}) = \mathbf{\hat{x}}k_{x} + \mathbf{\hat{y}}k_{y}, \mathbf{\hat{z}}k_{z}$ $\mathbf{d}(\Gamma_{2}^{-};\mathbf{k}) = \mathbf{\hat{x}}k_{y} - \mathbf{\hat{y}}k_{x}$ $\mathbf{d}(\Gamma_{3}^{-};\mathbf{k}) = \mathbf{\hat{x}}k_{x} - \mathbf{\hat{y}}k_{x}$ $\mathbf{d}(\Gamma_{4}^{-};\mathbf{k}) = \mathbf{\hat{x}}k_{y} + \mathbf{\hat{y}}k_{x}$ $\mathbf{d}(\Gamma_{5}^{-},1;\mathbf{k}) = \mathbf{\hat{x}}k_{z}, \mathbf{\hat{z}}k_{x}$ $\mathbf{d}(\Gamma_{5}^{-},2;\mathbf{k}) = \mathbf{\hat{y}}k_{z}, \mathbf{\hat{z}}k_{y}$

Phenomenological theory of unconventional superconductivity

Manfred Sigrist and Kazuo Ueda Rev. Mod. Phys. **63**, 239 – Published 1 April 1991

Ir repre	reducible esentation Γ	Basis function				
	Γ_1^+ Γ_2^+	(a) $\psi(\Gamma_1^+;\mathbf{k}) = 1, \ k_x^2 + k_y^2, \ k_z^2$ $\psi(\Gamma_2^+;\mathbf{k}) = k, \ k, \ (k^2 - k^2)$		A _{1g}	d+2g+2i 3k+3m	z^2 , $(x^2-y^2)^2-4x^2y^2$, z^4 ,
	Γ_{3}^{+} Γ_{4}^{+} Γ_{4}^{+}	$\psi(\Gamma_{4}^{+};\mathbf{k}) = k_{x}^{2} - k_{y}^{2}$ $\psi(\Gamma_{4}^{+};\mathbf{k}) = k_{x}k_{y}$ $\psi(\Gamma_{4}^{+};\mathbf{k}) = k_{x}k_{y}$	\leftrightarrow	A _{2g}	R+g+i 2k+2m	$R_z, xy(x^2-y^2), xyz^2(x^2-y^2)$
	15	$\psi(\Gamma_5, 1, \mathbf{k}) = k_x k_z$ $\psi(\Gamma_5^+, 2; \mathbf{k}) = k_y k_z$		B _{1g}	d+g+2i 2k+3m	x^2-y^2 , $z^2(x^2-y^2)$, $x^2(x^2-y^2)$
	Γ_1^- Γ_2^-	(b) $\mathbf{d}(\Gamma_1^-;\mathbf{k}) = \mathbf{\hat{x}}k_x + \mathbf{\hat{y}}k_y, \ \mathbf{\hat{z}}k_z$ $\mathbf{d}(\Gamma_2^-;\mathbf{k}) = \mathbf{\hat{x}}k_y - \mathbf{\hat{y}}k_z$		B _{2g}	d+g+2i 2k+3m	$xy, xyz^2, xy(x^2-3y^2)(3x)$
	Γ_3^- Γ_4^- Γ_5^-	$ \mathbf{d}(\Gamma_3^-;\mathbf{k}) = \mathbf{\hat{x}}k_x - \mathbf{\hat{y}}k_x \mathbf{d}(\Gamma_4^-;\mathbf{k}) = \mathbf{\hat{x}}k_y + \mathbf{\hat{y}}k_x \mathbf{d}(\Gamma_5^-,1;\mathbf{k}) = \mathbf{\hat{x}}k_z, \ \mathbf{\hat{z}}k_x $		Eg	R+d+2g+3i 4k+5m	$\{R_x, R_y\}, \{xz, yz\}, \{z, yz$
		$\mathbf{d}(\Gamma_5, 2; \mathbf{k}) = \mathbf{\hat{y}} k_z, \mathbf{\hat{z}} k_y$				

Phenomenological theory of unconventional superconductivity

Manfred Sigrist and Kazuo Ueda Rev. Mod. Phys. **63**, 239 – Published 1 April 1991

Irreducible representation Γ	Basis function
$ \begin{array}{c} \Gamma_{1}^{+} \\ \Gamma_{2}^{+} \\ \Gamma_{3}^{+} \\ \Gamma_{4}^{+} \\ \Gamma_{5}^{+} \end{array} $	(a) $\psi(\Gamma_1^+;\mathbf{k}) = 1, k_x^2 + k_y^2, k_z^2$ $\psi(\Gamma_2^+;\mathbf{k}) = k_x k_y (k_x^2 - k_y^2)$ $\psi(\Gamma_3^+;\mathbf{k}) = k_x^2 - k_y^2$ $\psi(\Gamma_4^+;\mathbf{k}) = k_x k_y$ $\psi(\Gamma_5^+,1;\mathbf{k}) = k_x k_z$ $\psi(\Gamma_5^+,2;\mathbf{k}) = k_y k_z$
Γ_1^- Γ_2^- Γ_3^- Γ_4^- Γ_5^-	(b) $\mathbf{d}(\Gamma_{1}^{-};\mathbf{k}) = \mathbf{\hat{x}}k_{x} + \mathbf{\hat{y}}k_{y}, \mathbf{\hat{z}}k_{z}$ $\mathbf{d}(\Gamma_{2}^{-};\mathbf{k}) = \mathbf{\hat{x}}k_{y} - \mathbf{\hat{y}}k_{x}$ $\mathbf{d}(\Gamma_{3}^{-};\mathbf{k}) = \mathbf{\hat{x}}k_{x} - \mathbf{\hat{y}}k_{x}$ $\mathbf{d}(\Gamma_{4}^{-};\mathbf{k}) = \mathbf{\hat{x}}k_{y} + \mathbf{\hat{y}}k_{x}$ $\mathbf{d}(\Gamma_{5}^{-},1;\mathbf{k}) = \mathbf{\hat{x}}k_{z}, \mathbf{\hat{z}}k_{x}$ $\mathbf{d}(\Gamma_{5}^{-},2;\mathbf{k}) = \mathbf{\hat{y}}k_{z}, \mathbf{\hat{z}}k_{y}$

Phenomenological theory of unconventional superconductivity

Manfred Sigrist and Kazuo Ueda Rev. Mod. Phys. **63**, 239 – Published 1 April 1991

Irreducible representation Γ	Basis function			
Γ_1^+ Γ_2^+	(a) $\psi(\Gamma_1^+;\mathbf{k}) = 1, \ k_x^2 + k_y^2, \ k_z^2$ $\psi(\Gamma_2^+;\mathbf{k}) = k_x k_y (k_x^2 - k_y^2)$	A _{1u}	h j+21	$xyz(x^2-y^2)$
Γ_{4}^{+} Γ_{5}^{+}	$\psi(\Gamma_3^+;\mathbf{k}) = k_x^2 - k_y^2$ $\psi(\Gamma_4^+;\mathbf{k}) = k_x k_y$ $\psi(\Gamma_5^+, 1;\mathbf{k}) = k_x k_z$	A _{2u}	p+f+2h 2j+31	z, z^3 , $z((x^2-y^2)^2-4x^2y^2)$, z
	$\psi(\Gamma_5^+, 2; \mathbf{k}) = k_y k_z$ (b)	B _{1u}	f+h 2j+21	xyz, xyz ³
Γ_1^- Γ_2^- Γ_3^-	$\mathbf{d}(\Gamma_1^-;\mathbf{k}) = \mathbf{\hat{x}}k_x + \mathbf{\hat{y}}k_y, \ \mathbf{\hat{z}}k_z$ $\mathbf{d}(\Gamma_2^-;\mathbf{k}) = \mathbf{\hat{x}}k_y - \mathbf{\hat{y}}k_z$ $\mathbf{d}(\Gamma_3^-;\mathbf{k}) = \mathbf{\hat{x}}k_x - \mathbf{\hat{y}}k_z$??? B _{2u}	f+h 2j+21	$z(x^2-y^2), z^3(x^2-y^2)$
$\frac{\Gamma_4^-}{\Gamma_5^-}$	$\mathbf{d}(\Gamma_4^-;\mathbf{k}) = \mathbf{\hat{x}}k_y + \mathbf{\hat{y}}k_x$ $\mathbf{d}(\Gamma_5^-,1;\mathbf{k}) = \mathbf{\hat{x}}k_z, \ \mathbf{\hat{z}}k_x$ $\mathbf{d}(\Gamma_5^-,2;\mathbf{k}) = \mathbf{\hat{x}}k_z, \ \mathbf{\hat{z}}k_x$	Eu	p+2f+3h 4j+51	$\{x, y\}, \{x(x^2-3y^2), y(3x^2-y^2)\}$

Phenomenological theory of unconventional superconductivity

Manfred Sigrist and Kazuo Ueda Rev. Mod. Phys. **63**, 239 – Published 1 April 1991

TABLE IV. (a) Even-parity basis gap functions $\widehat{\Delta}(\Gamma, m; \mathbf{k}) = i \widehat{\sigma}_y \psi(\Gamma, m; \mathbf{k})$ and (b) odd-parity basis gap functions $\widehat{\Delta}(\Gamma, m; \mathbf{k}) = i [\widehat{\boldsymbol{\sigma}} \cdot \mathbf{d}(\Gamma, m; \mathbf{k})] \widehat{\sigma}_y$ for the tetragonal lattice symmetry (D_{4h}) .

Irreducible representation Γ	Basis function
$\Gamma_1^+ \\ \Gamma_2^+ \\ \Gamma_3^+ \\ \Gamma_4^+ \\ \Gamma_5^+ \end{cases}$	(a) $\psi(\Gamma_1^+;\mathbf{k}) = 1, k_x^2 + k_y^2, k_z^2$ $\psi(\Gamma_2^+;\mathbf{k}) = k_x k_y (k_x^2 - k_y^2)$ $\psi(\Gamma_3^+;\mathbf{k}) = k_x^2 - k_y^2$ $\psi(\Gamma_4^+;\mathbf{k}) = k_x k_y$ $\psi(\Gamma_5^+, 1;\mathbf{k}) = k_x k_z$ $\psi(\Gamma_5^+, 2;\mathbf{k}) = k_y k_z$
Γ_1^- Γ_2^- Γ_3^- Γ_4^- Γ_5^-	(b) $d(\Gamma_{1}^{-};\mathbf{k}) = \mathbf{\hat{x}}k_{x} + \mathbf{\hat{y}}k_{y}, \mathbf{\hat{z}}k_{z}$ $d(\Gamma_{2}^{-};\mathbf{k}) = \mathbf{\hat{x}}k_{y} - \mathbf{\hat{y}}k_{x}$ $d(\Gamma_{3}^{-};\mathbf{k}) = \mathbf{\hat{x}}k_{x} - \mathbf{\hat{y}}k_{x}$ $d(\Gamma_{4}^{-};\mathbf{k}) = \mathbf{\hat{x}}k_{y} + \mathbf{\hat{y}}k_{x}$ $d(\Gamma_{5}^{-},1;\mathbf{k}) = \mathbf{\hat{x}}k_{z}, \mathbf{\hat{z}}k_{x}$ $d(\Gamma_{5}^{-},2;\mathbf{k}) = \mathbf{\hat{y}}k_{z}, \mathbf{\hat{z}}k_{y}$

In the presence of SOC:

Symmetry operations also act on the spin DOF and influence the classification of SC order parameters.

Spin singlet (associated with σ_0) always transforms trivially;

The irreps associated with each spin configuration in the triplet sector can be deduced from the explicit form of the generators:

$$C_{4z} = e^{i\pi\sigma_3/4} = \frac{\sigma_0 - i\sigma_3}{\sqrt{2}}$$
$$C_{2x} = e^{i\pi\sigma_1/2} = i\sigma_1$$

 $P = \sigma_0$ Homework!

Phenomenological theory of unconventional superconductivity

Manfred Sigrist and Kazuo Ueda

Irreducible

representation Γ

Rev. Mod. Phys. 63, 239 - Published 1 April 1991

TABLE II. (a) Even-parity basis gap functions $\hat{\Delta}(\Gamma, m; \mathbf{k}) = i \hat{\sigma}_y \psi(\Gamma, m; \mathbf{k})$ and (b) odd-parity basis gap functions $\hat{\Delta}(\Gamma, m; \mathbf{k}) = i [\hat{\sigma} \cdot \mathbf{d}(\Gamma, m; \mathbf{k})] \hat{\sigma}_y$ for the cubic lattice symmetry (O_h) .

(a)

Basis functions

TABLE III. (a) Even-parity basis gap functions $\hat{\Delta}(\Gamma,m;\mathbf{k})=i\hat{\sigma}_y\psi(\Gamma,m;\mathbf{k})$ and (b) odd-parity basis gap functions $\hat{\Delta}(\Gamma,m;\mathbf{k})=i[\hat{\sigma}\cdot\mathbf{d}(\Gamma,m;\mathbf{k})]\hat{\sigma}_y$ for the hexagonal lattice symmetry (D_{6h}) .

Basis functions

Irreducible

representation Γ

TABLE IV. (a) Even-parity basis gap functions $\hat{\Delta}(\Gamma, m; \mathbf{k}) = i\hat{\sigma}_y \psi(\Gamma, m; \mathbf{k})$ and (b) odd-parity basis gap functions $\hat{\Delta}(\Gamma, m; \mathbf{k}) = i[\hat{\boldsymbol{\sigma}} \cdot \mathbf{d}(\Gamma, m; \mathbf{k})]\hat{\sigma}_y$ for the tetragonal lattice symmetry (D_{4h}) .

Γ_1^+	$\psi(\Gamma_1^+;\mathbf{k})=1, \ k_x^2+k_y^2+k_z^2$	Γ_1^+
Γ_2^+	$\psi(\Gamma_2^+;\mathbf{k}) = (k_x^2 - k_y^2)(k_y^2 - k_z^2)(k_z^2 - k_x^2)$	Γ_2^+ Γ_1^+
Γ_3^+	$\psi(\Gamma_3^+, 1; \mathbf{k}) = 2k_z^2 - k_x^2 - k_y^2$ $\psi(\Gamma_3^+, 2; \mathbf{k}) = \sqrt{3}(k^2 - k^2)$	Γ_4^+
F ⁺	$\psi(\Gamma_{3}^{+},2,\mathbf{k}) = k k (k^{2}-k^{2})$	Γ_5^+
• 4	$\psi(\Gamma_{4}^{+},\mathbf{k}) = k_{z}k_{x}(k_{z}^{2} - k_{x}^{2})$ $\psi(\Gamma_{4}^{+},\mathbf{k}) = k_{z}k_{x}(k_{z}^{2} - k_{x}^{2})$ $\psi(\Gamma_{4}^{+},\mathbf{k}) = k_{x}k_{y}(k_{x}^{2} - k_{y}^{2})$	Γ_6^+
Γ_5^+	$\psi(\Gamma_5^+, 1; \mathbf{k}) = k_y k_z$ $\psi(\Gamma_5^+, 2; \mathbf{k}) = k_z k_x$ $\psi(\Gamma_5^+, 3; \mathbf{k}) = k_x k_y$	Γ_1^- Γ_2^-
	(b)	Γ_3^-
Γ_1^-	$\mathbf{d}(\boldsymbol{\Gamma}_1^-;\mathbf{k}) = \mathbf{\hat{x}}k_x + \mathbf{\hat{y}}k_y + \mathbf{\hat{z}}k_z$	
Γ_2^-	$\mathbf{d}(\Gamma_{2}^{-};\mathbf{k}) = \hat{\mathbf{x}}k_{x}(k_{z}^{2} - k_{y}^{2}) + \hat{\mathbf{y}}k_{y}(k_{x}^{2} - k_{z}^{2}) \\ + \hat{\mathbf{z}}k_{z}(k_{y}^{2} - k_{x}^{2})$	Γ_4^-
Γ_3^-	$\mathbf{d}(\Gamma_3^-, 1; \mathbf{k}) = 2\mathbf{\hat{z}}k_z - \mathbf{\hat{x}}k_x - \mathbf{\hat{y}}k_y$ $\mathbf{d}(\Gamma_3^-, 2; \mathbf{k}) = \sqrt{3}(\mathbf{\hat{x}}k_x - \mathbf{\hat{y}}k_y)$	Γ_5^-
Γ_4^-	$\mathbf{d}(\Gamma_4^-, 1; \mathbf{k}) = \mathbf{\hat{y}}k_z - \mathbf{\hat{z}}k_y$ $\mathbf{d}(\Gamma_4^-, 2; \mathbf{k}) = \mathbf{\hat{z}}k_x - \mathbf{\hat{x}}k_z$	Γ_6^-
	$\mathbf{d}(1_4, 3; \mathbf{k}) = \mathbf{\hat{k}} k_y - \mathbf{\hat{y}} k_x$	
Γ_5^-	$d(\Gamma_5^-, 1; \mathbf{k}) = \widehat{\mathbf{y}}k_z + \widehat{\mathbf{z}}k_y$ $d(\Gamma_5^-, 2; \mathbf{k}) = \widehat{\mathbf{z}}k_x + \widehat{\mathbf{x}}k_z$ $d(\Gamma_5^-, 3; \mathbf{k}) = \widehat{\mathbf{x}}k_y + \widehat{\mathbf{y}}k_z$	

(a) r+ $\psi(\Gamma_1^+;\mathbf{k})=1, k_x^2+k_y^2, k_z^2$ $\psi(\Gamma_2^+;\mathbf{k}) = k_x k_y (k_x^2 - 3k_y^2)(k_y^2 - 3k_x^2)$ $\psi(\Gamma_3^+;\mathbf{k}) = k_z k_x (k_x^2 - 3k_y^2)$ $\psi(\Gamma_4^+;\mathbf{k}) = k_z k_v (k_v^2 - 3k_x^2)$ $\psi(\Gamma_5^+, 1; \mathbf{k}) = k_x k_z$ $\psi(\Gamma_5^+,2;\mathbf{k})=k_vk_z$ $\psi(\Gamma_6^+, 1; \mathbf{k}) = k_x^2 - k_y^2$ $\psi(\Gamma_6^+, 2; \mathbf{k}) = 2k_x k_y$ (\mathbf{b}) $\mathbf{d}(\Gamma_1^-;\mathbf{k}) = \mathbf{\hat{x}}k_x + \mathbf{\hat{y}}k_y, \mathbf{\hat{z}}k_z$ $\mathbf{d}(\Gamma_2^-;\mathbf{k}) = \mathbf{\hat{x}}k_v - \mathbf{\hat{y}}k_x$ $\mathbf{d}(\boldsymbol{\Gamma}_{3}^{-};\mathbf{k}) = \mathbf{\hat{z}}k_{x}(k_{x}^{2}-3k_{y}^{2}),$ $k_z[(k_x^2-k_y^2)\hat{\mathbf{x}}-2k_xk_y\hat{\mathbf{y}}]$ $\mathbf{d}(\boldsymbol{\Gamma}_{4}^{-};\mathbf{k})=\mathbf{\hat{z}}k_{y}(k_{y}^{2}-3k_{x}^{2}),$ $k_z \left[(k_v^2 - k_x^2) \hat{\mathbf{y}} - 2k_x k_v \hat{\mathbf{x}} \right]$ $\mathbf{d}(\Gamma_5^-, 1; \mathbf{k}) = \mathbf{\hat{x}}k_z, \mathbf{\hat{z}}k_x$ $\mathbf{d}(\Gamma_5^-, 2; \mathbf{k}) = \mathbf{\hat{y}} k_z, \mathbf{\hat{z}} k_y$ $\mathbf{d}(\Gamma_6^-, 1; \mathbf{k}) = \mathbf{\hat{x}} k_x - \mathbf{\hat{y}} k_y$ $d(\Gamma_6^-, 2; \mathbf{k}) = \mathbf{\hat{x}} k_v - \mathbf{\hat{y}} k_x$

Irreducible representation Γ	Basis function
$\Gamma_1^+ \ \Gamma_2^+ \ \Gamma_3^+ \ \Gamma_5^+$	(a) $\psi(\Gamma_1^+;\mathbf{k}) = 1, \ k_x^2 + k_y^2, \ k_z^2$ $\psi(\Gamma_2^+;\mathbf{k}) = k_x k_y (k_x^2 - k_y^2)$ $\psi(\Gamma_3^+;\mathbf{k}) = k_x^2 - k_y^2$ $\psi(\Gamma_4^+;\mathbf{k}) = k_x k_y$ $\psi(\Gamma_5^+,1;\mathbf{k}) = k_x k_z$ $\psi(\Gamma_5^+,2;\mathbf{k}) = k_y k_z$
Γ_1^- Γ_2^- Γ_3^- Γ_4^- Γ_5^-	(b) $\mathbf{d}(\Gamma_1^-;\mathbf{k}) = \mathbf{\hat{x}}k_x + \mathbf{\hat{y}}k_y, \ \mathbf{\hat{z}}k_z$ $\mathbf{d}(\Gamma_2^-;\mathbf{k}) = \mathbf{\hat{x}}k_y - \mathbf{\hat{y}}k_x$ $\mathbf{d}(\Gamma_3^-;\mathbf{k}) = \mathbf{\hat{x}}k_x - \mathbf{\hat{y}}k_x$ $\mathbf{d}(\Gamma_4^-;\mathbf{k}) = \mathbf{\hat{x}}k_y + \mathbf{\hat{y}}k_x$ $\mathbf{d}(\Gamma_5^-,1;\mathbf{k}) = \mathbf{\hat{x}}k_z, \ \mathbf{\hat{z}}k_z$ $\mathbf{d}(\Gamma_5^-,2;\mathbf{k}) = \mathbf{\hat{y}}k_z, \ \mathbf{\hat{z}}k_y$

Can deduce irreps for all other point groups by "symmetry descent"

Complete classification of SC order parameters from the perspective of point groups!

The 32 point groups

No.	Label		Elements
Trici	linic		
1	1	C_1	E
2	ī	C,	E, I
Mon	aclinic		
3	2	<i>C</i> .	$E_{\rm e} C_{\rm rel}$
4	m	C. C.	E, σ
5	2/m	C.,	E, C_{2}, I, σ
Orth	orhombic	24	
6	222	D_{2}	E. Com Com Con
2	mm2	<i>C</i> ₁	$E C_{2x}, \sigma_{2y}, \sigma_{2y}$
8	mmm	D 20	$E_1 C_{2m} C_{2m} C_{2m} I_n \sigma_n \sigma_n$
Tetra	aanal	14	$-1 - 2x_1 + 2y_2 + 2z_2 - 1 - x_3 - y_1 - z_3$
9	4	C.	$E, C_{1}^{\dagger}, C_{2}^{\dagger}, C_{2}^{\dagger}$
10	4	S.	$E_1 S_{421} C_{421} C_{22}$
11	4/m	Can	$E, C_{-}^{+}, C_{-}^{+}, C_{-}^{-}, I, S_{-}, S_{-}^{+}, \sigma$
12	422	DA	$E_{1} C_{2m}^{+}, C_{4m}^{-}, C_{2m}^{-}, C_{2m}^{-}$
13	4mm	CA	$E, C_{4\pi}^+, C_{4\pi}^-, C_{2\pi}, \sigma_{\mu}, \sigma_{\mu}, \sigma_{d\mu}, \sigma_{d\mu}$
14	4 2m	D_{2d}	$E_1 S_{42}^+, S_{42}^-, C_{32}^-, C_{23}^-, C_{23}^-, \sigma_{da}^-, \sigma_{db}^-$
15	4/mmm	DAh	$E_1, C_{4-1}^1, C_{4-1}, C_{2-1}, C_{2-1}, C_{2-1}, C_{2-1}, C_{2-1}$
			$I, S_{4z}^-, S_{4z}^+, \sigma_x, \sigma_y, \sigma_y, \sigma_{da}, \sigma_{db}$
Trig	onal		
16	3	С,	E, C_3^{\dagger}, C_3
17	3	C 1:	$E_1 C_3^+, C_3^-, I, S_6^-, S_6^+$
18	32	D_3	$E, C_3^+, C_3^-, C_{21}, C_{22}^{\prime}, C_{23}^{\prime}$
19	3m	C.3.	$E, C_{3}^{+}, C_{3}^{-}, \sigma_{d1}, \sigma_{d2}, \sigma_{d3}$
20	3m	Dad	$E, C_3^+, C_3^-, C_{21}^+, C_{22}^+, C_{23}^+, I, S_6^-, S_6^+, \sigma_{a1}^-, \sigma_{a2}^-, \sigma_{a3}^-$
Hexa	agonal		
21	6	C.,	$E, C_{6}^{+}, C_{6}^{-}, C_{3}^{+}, C_{3}^{-}, C_{2}^{-}$
22	6	C3h	$E, S_3^-, S_3^+, C_3^-, C_3^-, \sigma_h$
23	6/m	Con	$E, C_6^+, C_6^-, C_3^-, C_3^-, C_2, I, S_3^-, S_3^+, S_6^-, S_6^+, \sigma_h$
24	622	D_6	$E, C_6^1, C_6, C_3^1, C_3, C_2, C_{21}^{\prime}, C_{22}^{\prime}, C_{23}^{\prime}, C_{21}^{\prime}, C_{22}^{\prime}, C_{23}^{\prime}, C_{21}^{\prime}, C_{22}^{\prime}, C_{23}^{\prime}$
25	6mm	C_{6v}	$E, C_6^+, C_6^-, C_2^-, C_3^-, C_2^-, \sigma_{d1}^-, \sigma_{d2}^-, \sigma_{d3}^-, \sigma_{v2}^-, \sigma_{v3}^-$
26	<u>6</u> 2m	D_{3k}	$E, S_3^-, S_3^+, C_3^+, C_3^-, \sigma_k, C_{21}', C_{22}', C_{23}', \sigma_{v1}, \sigma_{v2}, \sigma_{v3}$
27	6/mmm	Don	$E, C_6^+, C_6^-, C_3^+, C_3^-, C_2, C_{21}', C_{22}', C_{23}', C_{21}', C_{22}', C_{23}'$
			$I, S_3, S_3^+, S_6^-, S_6^+, \sigma_h, \sigma_{d1}, \sigma_{d2}, \sigma_{d3}, \sigma_{v1}, \sigma_{v2}, \sigma_{v3}$
Cubi	ic .		
28	23	Т	$E_{1}, C_{2m}, C_{3j}, C_{3j}$
29	m3	T_{h}	$E, C_{2m}, C_{3j}^{-}, C_{3j}^{-}, I, \sigma_m, S_{6j}^{-}, S_{6j}^{+}$
30	432	0	$E, C_{2m}, C_{3j}^+, C_{3j}^-, C_{2p}^-, C_{4m}^+, C_{4m}^-$
31	43m	T _d	$E, C_{2m}, C_{3j}^+, C_{3j}^-, \sigma_{dp}, S_{4m}^-, S_{4m}^+$
32	m3m	O _h	$E, C_{2m}, C_{3j}, C_{3j}, C_{2p}, C_{4m}^{+}, C_{4m}^{-}$
			$I, \sigma_m, S_{6j}^-, S_{6j}^+, \sigma_{dp}, S_{4m}^-, S_{4m}^-$

Have we covered everything? Is the Sigrist-Ueda classification "complete"?

"Yes and No!"

Have we covered everything? Is the Sigrist-Ueda classification "complete"?

[Generalizations]

I) Multiple internal DOF

II) Nonsymmorphic systems [Space group]

Have we covered everything? Is the Sigrist-Ueda classification "complete"?

[Generalizations]

I) Multiple internal DOF

II) Nonsymmorphic systems [Space group]

How to describe the superconducting states in complex materials with multiple internal DOFs?

Considering multiple internal DOF (orbitals/sublattice)

Annica's Lecture:

The mean-field BdG Hamiltonian

$$\hat{H}_{BdG}(\mathbf{k}) = \begin{pmatrix} \hat{H}_0(\mathbf{k}) & \hat{\Delta}(\mathbf{k}) \\ \hat{\Delta}^{\dagger}(\mathbf{k}) & -\hat{H}_0^*(-\mathbf{k}) \end{pmatrix}$$

$$\hat{\Delta}(\mathbf{k}) = \sum_{ab} d_{ab}(\mathbf{k})\hat{\tau}_a \otimes \hat{\sigma}_b(i\hat{\sigma}_2)$$
Orbital/SL Spin

Considering multiple internal DOF (orbitals/sublattice)

Annica's Lecture:

The mean-field BdG Hamiltonian

$$\hat{H}_{BdG}(\mathbf{k}) = \begin{pmatrix} \hat{H}_0(\mathbf{k}) & \hat{\Delta}(\mathbf{k}) \\ \hat{\Delta}^{\dagger}(\mathbf{k}) & -\hat{H}_0^*(-\mathbf{k}) \end{pmatrix}$$

$$\hat{\Delta}(\mathbf{k}) = \sum_{ab} d_{ab}(\mathbf{k})\hat{\tau}_a \otimes \hat{\sigma}_b(i\hat{\sigma}_2)$$
Orbital/SL Spin

In principle parametrised in terms of (3+1)x(3+1) = 16 functions d_{ab}(k)

 $egin{aligned} \sigma_1 &= \sigma_{\mathrm{x}} = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} \ \sigma_2 &= \sigma_{\mathrm{y}} = egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix} \ \sigma_3 &= \sigma_{\mathrm{z}} = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} \end{aligned}$

If a = 0,3: Intra-orbital/SL If a = 1,2: Inter-orbital/SL

If b = 0: Spin Singlet If b = 1,2,3: Spin Triplet

$$\hat{\Delta}(\mathbf{k}) = \sum_{ab} d_{ab}(\mathbf{k})\hat{\tau}_a \otimes \hat{\sigma}_b(i\hat{\sigma}_2)$$

[a,b]	$\hat{ au}_a$	$\hat{\sigma}_b(i\sigma_2)$	Matrix	k
[0,0]	S	Α	А	Е
[0,1]	S	S	S	0
[0,2]	S	S	S	0
[0,3]	S	S	S	0
[1,0]	S	А	А	Е
[1,1]	S	S	S	0
[1,2]	S	S	S	0
[1,3]	S	S	S	0
[2,0]	A	Α	S	0
[2,1]	A	S	Α	Е
[2,2]	A	S	Α	Е
[2,3]	A	S	Α	Е
[3,0]	S	Α	Α	Е
[3,1]	S	S	S	0
[3,2]	S	S	S	0
[3,3]	S	S	S	0

Annica's Lecture:

$$\hat{\Delta}(\mathbf{k}) = -\hat{\Delta}^T(-\mathbf{k})$$

If the matrix is anti-symmetric: k-even If the matrix is symmetric: k-odd

$$\hat{\Delta}(\mathbf{k}) = \sum_{ab} d_{ab}(\mathbf{k})\hat{\tau}_a \otimes \hat{\sigma}_b(i\hat{\sigma}_2)$$

<u>-</u>		전 15년 14일 5년 14일 5년		
[a,b]	$\hat{ au}_a$	$\hat{\sigma}_b(i\sigma_2)$	Matrix	k
[0,0]	S	Α	Α	Е
[0,1]	S	S	S	0
[0,2]	S	S	S	0
[0,3]	S	S	S	0
[1,0]	S	Α	Α	Е
[1,1]	S	S	S	0
[1,2]	S	S	S	0
[1,3]	S	S	S	0
[2,0]	A	Α	S	0
[2,1]	A	S	Α	Е
[2,2]	A	S	Α	Е
[2,3]	A	S	Α	Е
[3,0]	S	Α	Α	Е
[3,1]	S	S	S	0
[3,2]	S	S	S	0
[3,3]	S	S	S	0

Annica's Lecture:

$$\hat{\Delta}(\mathbf{k}) = -\hat{\Delta}^T(-\mathbf{k})$$

If the matrix is anti-symmetric: k-even If the matrix is symmetric: k-odd

$$\hat{\Delta}(\mathbf{k}) = \sum_{ab} d_{ab}(\mathbf{k})\hat{\tau}_a \otimes \hat{\sigma}_b(i\hat{\sigma}_2)$$

Inversion symmetry:

Equal parity:
$$P = \pm \hat{\tau}_0 \otimes \hat{\sigma}_0$$

Opposite parity: $P = \hat{\tau}_3 \otimes \hat{\sigma}_0$

[a,b]	$\hat{ au}_a$	$\hat{\sigma}_b(i\sigma_2)$	Matrix	k
[0,0]	S	A	Α	E
[0,1]	S	S	S	0
[0,2]	S	S	S	0
[0,3]	S	S	S	0
[1,0]	S	A	А	Е
[1,1]	S	S	S	0
[1,2]	S	S	S	0
[1,3]	S	S	S	0
[2,0]	A	A	S	0
[2,1]	A	S	А	Е
[2,2]	A	S	Α	Е
[2,3]	A	S	Α	Е
[3,0]	S	Α	Α	Е
[3,1]	S	S	S	0
[3,2]	S	S	S	0
[3,3]	S	S	S	0

Annica's Lecture:

$$\hat{\Delta}(\mathbf{k}) = -\hat{\Delta}^T(-\mathbf{k})$$

If the matrix is anti-symmetric: k-even If the matrix is symmetric: k-odd

$$\hat{\Delta}(\mathbf{k}) = \sum_{ab} d_{ab}(\mathbf{k})\hat{\tau}_a \otimes \hat{\sigma}_b(i\hat{\sigma}_2)$$

Inversion symmetry:

Equal parity:
$$P = \pm \hat{\tau}_0 \otimes \hat{\sigma}_0$$

Opposite parity: $P = \hat{\tau}_3 \otimes \hat{\sigma}_0$

]	
[a,b]	$\hat{ au}_a$	$\hat{\sigma}_b(i\sigma_2)$	Matrix	k	EP
[0, 0]	S	Α	A	Е	Е
[0,1]	S	S	S	0	0
[0,2]	S	S	S	0	0
[0,3]	S	S	S	0	0
[1, 0]	S	A	A	E	Е
[1, 1]	S	S	S	0	0
[1,2]	S	S	S	0	0
[1,3]	S	S	S	0	0
[2, 0]	A	А	S	0	0
[2, 1]	A	S	Α	Е	Е
[2,2]	A	S	Α	Е	Е
[2, 3]	A	S	Α	E	Е
[3,0]	S	Α	Α	Е	Е
[3,1]	S	S	S	0	0
[3,2]	S	S	S	0	0
[3, 3]	S	S	S	0	0

Annica's Lecture:

$$\hat{\Delta}(\mathbf{k}) = -\hat{\Delta}^T(-\mathbf{k})$$

If the matrix is anti-symmetric: k-even If the matrix is symmetric: k-odd

$$\hat{\Delta}(\mathbf{k}) = \sum_{ab} d_{ab}(\mathbf{k})\hat{\tau}_a \otimes \hat{\sigma}_b(i\hat{\sigma}_2)$$

Inversion symmetry:

Equal parity:
$$P = \pm \hat{\tau}_0 \otimes \hat{\sigma}_0$$

Opposite parity: $P = \hat{\tau}_3 \otimes \hat{\sigma}_0$

[a,b]	$\hat{ au}_a$	$\hat{\sigma}_b(i\sigma_2)$	Matrix	k	EP	OP
[0,0]	S	Α	Α	Е	Е	Е
[0,1]	S	S	S	0	0	0
[0,2]	S	S	S	0	0	0
[0,3]	S	S	S	0	0	0
[1, 0]	S	А	Α	Е	Е	0
[1,1]	S	S	S	0	0	Е
[1,2]	S	S	S	0	0	Е
[1,3]	S	S	S	0	0	Е
[2, 0]	A	Α	S	0	0	Е
[2, 1]	A	S	Α	Е	Е	0
[2,2]	A	S	Α	Е	Е	0
[2, 3]	A	S	Α	Е	Е	0
[3,0]	S	Α	Α	Е	Е	Е
[3,1]	S	S	S	0	0	0
[3,2]	S	S	S	0	0	0
[3,3]	S	S	S	0	0	0

Annica's Lecture:

$$\hat{\Delta}(\mathbf{k}) = -\hat{\Delta}^T(-\mathbf{k})$$

If the matrix is anti-symmetric: k-even If the matrix is symmetric: k-odd

$$\hat{\Delta}(\mathbf{k}) = \sum_{ab} d_{ab}(\mathbf{k})\hat{\tau}_a \otimes \hat{\sigma}_b(i\hat{\sigma}_2)$$

Inversion symmetry:

Equal parity:
$$P = \pm \hat{\tau}_0 \otimes \hat{\sigma}_0$$

Opposite parity: $P = \hat{\tau}_3 \otimes \hat{\sigma}_0$

[a,b]	$\hat{ au}_a$	$\hat{\sigma}_b(i\sigma_2)$	Matrix	k	EP	OP	\mathbf{SL}
[0, 0]	S	A	Α	Е	Е	Е	Е
[0,1]	S	S	S	0	0	0	0
[0,2]	S	S	S	0	0	0	0
[0,3]	S	S	S	0	0	0	0
[1,0]	S	Α	Α	Е	Е	0	Е
[1,1]	S	S	S	0	0	Е	0
[1,2]	S	S	S	0	0	Е	0
[1,3]	S	S	S	0	0	Е	0
[2, 0]	A	A	S	0	0	Е	Е
[2,1]	A	S	Α	Е	Е	0	0
[2,2]	A	S	Α	Е	Е	0	0
[2,3]	A	S	Α	Е	Е	0	0
[3,0]	S	A	Α	Е	Е	Е	0
[3,1]	S	S	S	0	0	0	Е
[3,2]	S	S	S	0	0	0	Е
[3,3]	S	S	S	0	0	0	Е

$$\hat{\Delta}(\mathbf{k}) = \sum_{ab} d_{ab}(\mathbf{k})\hat{\tau}_a \otimes \hat{\sigma}_b(i\hat{\sigma}_2)$$

[a,b]	$\hat{ au}_a$	$\hat{\sigma}_b(i\sigma_2)$	Matrix	k	EP	OP	\mathbf{SL}
[0, 0]	S	A	Α	Е	Е	Е	Е
[0,1]	S	S	S	0	0	0	0
[0,2]	S	S	S	0	0	0	0
[0,3]	S	S	S	0	0	0	0
[1, 0]	S	A	Α	Е	Е	0	Е
[1, 1]	S	S	S	0	0	Е	0
[1, 2]	S	S	S	0	0	Е	0
[1, 3]	S	S	S	0	0	Е	0
[2, 0]	A	A	S	0	0	Е	Е
[2, 1]	A	S	Α	Е	Е	0	0
[2, 2]	A	S	Α	Е	Е	0	0
[2, 3]	A	S	Α	Е	Е	0	0
[3, 0]	S	A	A	Е	Е	Е	0
$\overline{[3,1]}$	S	S	S	0	0	0	Е
[3,2]	S	S	S	0	0	0	Е
[3,3]	S	S	S	0	0	0	Е

$$\hat{\Delta}(\mathbf{k}) = \sum_{ab} d_{ab}(\mathbf{k})\hat{\tau}_a \otimes \hat{\sigma}_b(i\hat{\sigma}_2)$$

Spin Singlet [b=0]

[a,b]	$\hat{ au}_a$	$\hat{\sigma}_b(i\sigma_2)$	Matrix	k	EP	OP	\mathbf{SL}
[0, 0]	S	А	A	Е	Е	Е	Е
[0,1]	S	S	S	0	0	0	0
[0,2]	S	S	S	0	0	0	0
[0,3]	S	S	S	0	0	0	0
[1,0]	S	А	А	Е	Е	0	Е
[1,1]	S	S	S	0	0	Е	0
[1,2]	S	S	S	0	0	Е	0
[1,3]	S	S	S	0	0	Е	0
[2,0]	A	А	S	0	0	Е	Е
[2,1]	A	S	Α	Е	Е	0	0
[2,2]	A	S	Α	Е	Е	0	0
[2,3]	A	S	Α	Е	Е	0	0
[3,0]	S	Α	А	Е	Е	Е	0
[3,1]	S	S	S	0	0	0	Е
[3,2]	S	S	S	0	0	0	Е
[3,3]	S	S	S	0	0	0	Е

$$\hat{\Delta}(\mathbf{k}) = \sum_{ab} d_{ab}(\mathbf{k})\hat{\tau}_a \otimes \hat{\sigma}_b(i\hat{\sigma}_2)$$

Spin Singlet [b=0]

Spin Triplet [b=1,2,3]

	[a,b]	$\hat{ au}_a$	$\hat{\sigma}_b(i\sigma_2)$	Matrix	k	EP	OP	\mathbf{SL}
	[0, 0]	S	A	A	Е	Е	Е	Е
	[0, 1]	S	S	S	0	0	0	0
	[0, 2]	S	S	S	0	0	0	0
	[0, 3]	S	S	S	0	0	0	0
	[1, 0]	S	A	А	Е	Е	0	Е
	[1, 1]	S	S	S	0	0	Е	0
	[1, 2]	S	S	S	0	0	Е	0
	[1, 3]	S	S	S	0	0	Е	0
\rightarrow	[2, 0]	A	A	S	0	0	Е	Е
\rightarrow	[2, 1]	A	S	А	Е	Е	0	0
\rightarrow	[2, 2]	A	S	А	Е	Е	0	0
	[2, 3]	A	S	А	Е	Е	0	0
	[3, 0]	S	A	А	Е	Е	Е	0
	[3, 1]	S	S	S	0	0	0	Е
	[3,2]	S	S	S	0	0	0	Е
	[3, 3]	S	S	S	0	0	0	Е

$$\hat{\Delta}(\mathbf{k}) = \sum_{ab} d_{ab}(\mathbf{k})\hat{\tau}_a \otimes \hat{\sigma}_b(i\hat{\sigma}_2)$$

Spin Singlet [b=0]

Spin Triplet [b=1,2,3]

k-dependence does not uniquely define the parity of the SC order parameter!

	[a,b]	$\hat{ au}_a$	$\hat{\sigma}_b(i\sigma_2)$	Matrix	k	EP	OP	\mathbf{SL}
	[0,0]	S	А	А	Е	Е	Е	Е
	[0,1]	S	S	S	0	0	0	0
	[0,2]	S	S	S	0	0	0	0
	[0,3]	S	S	S	0	0	0	0
	[1, 0]	S	А	А	Е	Е	0	Е
	[1, 1]	S	S	S	0	0	Е	0
	[1, 2]	S	S	S	0	0	Е	0
	[1, 3]	S	S	S	0	0	Е	0
\rightarrow	[2, 0]	A	А	S	0	0	Е	Е
	[2, 1]	A	S	А	Е	Е	0	0
	[2, 2]	A	S	А	Е	Е	0	0
	[2, 3]	A	S	А	Е	Е	0	0
	[3,0]	S	A	А	Е	Е	Е	0
	[3,1]	S	S	S	0	0	0	Е
	[3,2]	S	S	S	0	0	0	Е
	[3, 3]	S	S	S	0	0	0	Е
Some examples of nontrivial phenomenology

$$\hat{\Delta}(\mathbf{k}) = -\hat{\Delta}^{T}(-\mathbf{k}) \xrightarrow{\text{Only spin}} \hat{\Delta}(\mathbf{k}) = d_{a}(\mathbf{k})\hat{\sigma}_{a}(i\hat{\sigma}_{2})$$

$$\xrightarrow{\hat{\Delta}(\mathbf{k}) = d_{ab}(\mathbf{k})\hat{\tau}_{a} \otimes \hat{\sigma}_{b}(i\hat{\sigma}_{2})$$

$$\hat{\Delta}(\mathbf{k}) = d_{ab}(\mathbf{k})\hat{\tau}_{a} \otimes \hat{\sigma}_{b}(i\hat{\sigma}_{2})$$
Orbital/Layer/Sublattice+Spin

Can transform non-trivially under inversion!

$$\hat{\Delta}(\mathbf{k}) = -\hat{\Delta}^{T}(-\mathbf{k}) \xrightarrow{\text{Only spin}} \hat{\Delta}(\mathbf{k}) = d_{a}(\mathbf{k})\hat{\sigma}_{a}(i\hat{\sigma}_{2})$$

$$\xrightarrow{\hat{\Delta}(\mathbf{k}) = d_{ab}(\mathbf{k})\hat{\tau}_{a} \otimes \hat{\sigma}_{b}(i\hat{\sigma}_{2})$$

$$\hat{\Delta}(\mathbf{k}) = d_{ab}(\mathbf{k})\hat{\tau}_{a} \otimes \hat{\sigma}_{b}(i\hat{\sigma}_{2})$$
Orbital/Layer/Sublattice+Spin

Can transform non-trivially under inversion!

The case of CeRh₂As₂

Sublattice structure

$$P = \hat{\tau}_1$$

 $\hat{\Delta}(\mathbf{k}) = d_{33}(\mathbf{k})\hat{\tau}_3 \otimes \hat{\sigma}_3(i\hat{\sigma}_2)$

Even-parity, k-odd, intra-layer, spin-triplet

Two superconducting phases!

D. Möckli and A. Ramires, Phys. Rev. Research 3, 023204 (2021)

The case of CeRh₂As₂

Sublattice structure

 $P = \hat{\tau}_1$

 $\hat{\Delta}(\mathbf{k}) = d_{33}(\mathbf{k})\hat{\tau}_3 \otimes \hat{\sigma}_3(i\hat{\sigma}_2)$

Even-parity, k-odd, intra-layer, spin-triplet

Two superconducting phases!

The case of d-Bi₂Se₃

Even- and odd-P orbitals

$$P = \hat{\tau}_3$$

$$\hat{\Delta}(\mathbf{k}) = d_0 \hat{\tau}_1 \otimes \hat{\sigma}_0(i\hat{\sigma}_2)$$

Odd-parity, s-wave, inter-orbital, spin-singlet

Generalized Anderson's Theorem

The case of CeRh₂As₂

Sublattice structure

 $P = \hat{\tau}_1$

 $\hat{\Delta}(\mathbf{k}) = d_{33}(\mathbf{k})\hat{\tau}_3 \otimes \hat{\sigma}_3(i\hat{\sigma}_2)$

Even-parity, k-odd, intra-layer, spin-triplet

Two superconducting phases!

The case of d-Bi₂Se₃ Even- and odd-P orbitals

$$P = \hat{\tau}_3$$

$$\hat{\Delta}(\mathbf{k}) = d_0 \hat{\tau}_1 \otimes \hat{\sigma}_0(i\hat{\sigma}_2)$$

Odd-parity, s-wave, inter-orbital, spin-singlet

Generalized Anderson's Theorem

The case of Sr₂RuO₄ 3 orbitals

Chiral d-wave superconductivity [Orbital antisymmetric spin-triplet]

Chiral d-wave in 2D FS!

3 t_{2g} orbitals/3 bands system

© Felix Baumberger

S. Beck, A. Ramires et al., Phys. Rev. Research 4, 023060 (2022)

3 t_{2g} orbitals/3 bands system

© Felix Baumberger

 $3 t_{2g}$ orbitals/3 bands system

SC states [Even-parity sector]

Irrep	[a,b]	Orbital	Spin
	[0, 0]	symmetric	singlet
4.	[8, 0]	symmetric	singlet
Λ_{1g}	[4, 3]	antisymmetric	triplet
	[5,2] - [6,1]	antisymmetric	triplet
A_{2g}	[5,1] + [6,2]	antisymmetric	triplet
B.	[7, 0]	symmetric	singlet
D_{1g}	[5,2] + [6,1]	antisymmetric	triplet
Ba	[1, 0]	symmetric	singlet
D_{2g}	[5,1] - [6,2]	antisymmetric	triplet
	$\{[3,0],-[2,0]\}$	symmetric	singlet
E_g	$\{[4,2],-[4,1]\}$	antisymmetric	triplet
	$\{[5,3],[6,3]\}$	antisymmetric	triplet

Microscopic basis: E-parity/S-Triplet Band basis: pseudospin-S

 $3 t_{2g}$ orbitals/3 bands system

SC states [Even-parity sector]

	Irrep	[a,b]	Orbital	Spin
		[0, 0]	symmetric	singlet
	4.	[8, 0]	symmetric	singlet
	A_{1g}	[4, 3]	antisymmetric	triplet
		[5,2] - [6,1]	antisymmetric	triplet
	A_{2g}	[5,1] + [6,2]	antisymmetric	triplet
	B_{1g}	[7, 0]	symmetric	singlet
		[5,2] + [6,1]	antisymmetric	triplet
	P.	[1, 0]	symmetric	singlet
	D_{2g}	[5,1] - [6,2]	antisymmetric	triplet
		$\{[3,0],-[2,0]\}$	symmetric	singlet
	E_g	$\{[4,2],-[4,1]\}$	antisymmetric	triplet
		$\{[5,3],[6,3]\}$	antisymmetric	triplet

Microscopic basis: E-parity/S-Triplet Band basis: pseudospin-S

Hund's interaction [inter-orbital]

 $3 t_{2g}$ orbitals/3 bands system

SC states [Even-parity sector]

	Irrep	[a,b]	Orbital	Spin
		[0, 0]	symmetric	singlet
	4.	[8, 0]	symmetric	singlet
	A_{1g}	[4, 3]	antisymmetric	triplet
		[5,2] - [6,1]	antisymmetric	triplet
	A_{2g}	[5,1] + [6,2]	antisymmetric	triplet
	B_{1g}	[7, 0]	symmetric	singlet
		[5,2] + [6,1]	antisymmetric	triplet
	P.	[1, 0]	symmetric	singlet
	D_{2g}	[5,1] - [6,2]	antisymmetric	triplet
		$\{[3,0],-[2,0]\}$	symmetric	singlet
	E_g	$\{[4,2],-[4,1]\}$	antisymmetric	triplet
		$\{[5,3],[6,3]\}$	antisymmetric	triplet

Microscopic basis: E-parity/S-Triplet Band basis: pseudospin-S

Hund's interaction [inter-orbital]

 $3 t_{2g}$ orbitals/3 bands system

SC states [Even-parity sector]

	Irrep	[a,b]	Orbital	Spin
		[0, 0]	symmetric	singlet
	Δ.	[8, 0]	symmetric	singlet
	A_{1g}	[4, 3]	antisymmetric	triplet
		[5,2] - [6,1]	antisymmetric	triplet
	A_{2g}	[5,1] + [6,2]	antisymmetric	triplet
	B_{1g}	[7, 0]	symmetric	singlet
		[5,2] + [6,1]	antisymmetric	triplet
	R _a	[1, 0]	symmetric	singlet
	D_{2g}	[5,1] - [6,2]	antisymmetric	triplet
	E_g	$\{[3,0],-[2,0]\}$	symmetric	singlet
		$\{[4,2],-[4,1]\}$	antisymmetric	triplet
		$\{[5,3],[6,3]\}$	antisymmetric	triplet

Microscopic basis: E-parity/S-Triplet Band basis: pseudospin-S

Hund's interaction [inter-orbital]

- Uncovered mechanism for chiral d-wave!
- Engineering the normal state to enhance T_c!

S. Beck, A. Ramires et al., Phys. Rev. Research 4, 023060 (2022)

Pz-like orbitals in a quintuple layer

Pz-like orbitals in a quintuple layer

K-independent sector

Irrep	Spin	Orbital	Parity	Matrix Form
A	Singlet	Trivial	Even	$\hat{ au}_0\otimes\hat{\sigma}_0(i\hat{\sigma}_2)$
	Singlet	IIIviai	Even	$\hat{ au}_3\otimes\hat{\sigma}_0(i\hat{\sigma}_2)$
A_{1u}	Triplet	Singlet	Odd	$\hat{ au}_2\otimes\hat{\sigma}_3(i\hat{\sigma}_2)$
A_{2u}	Singlet	Triplet	Odd	$\hat{ au}_1\otimes\hat{\sigma}_0(i\hat{\sigma}_2)$
E	Triplet	Singlet	Odd	$i\hat{ au}_2\otimes\hat{\sigma}_1(i\hat{\sigma}_2)$
E_u	Tiblet		Ouu	$\hat{ au}_2\otimes\hat{\sigma}_2(i\hat{\sigma}_2)$

Odd parity \Rightarrow Nodes! [Sensitive to disorder]

Pz-like orbitals in a quintuple layer

K-independent sector

Irrep	Spin	Orbital	Parity	Matrix Form
<i>A</i> 1	Singlet	Trivial	Even	$\hat{ au}_0 \otimes \hat{\sigma}_0(i\hat{\sigma}_2)$
T_{1g}	Singlet			$\hat{ au}_3 \otimes \hat{\sigma}_0(i\hat{\sigma}_2)$
A_{1u}	Triplet	Singlet	Odd	$\hat{ au}_2\otimes\hat{\sigma}_3(i\hat{\sigma}_2)$
A_{2u}	Singlet	Triplet	Odd	$\hat{ au}_1 \otimes \hat{\sigma}_0(i\hat{\sigma}_2)$
E	Triplet	Singlet	Odd	$i\hat{ au}_2\otimes\hat{\sigma}_1(i\hat{\sigma}_2)$
E_u	Inplet	Singlet	Ouu	$\hat{ au}_2 \otimes \hat{\sigma}_2(i\hat{\sigma}_2)$

Odd parity \Rightarrow Nodes! [Sensitive to disorder]

Experiment/Theory


```
M. P. Smylie et al., PRB 96, 115145 (2017)
```


Pz-like orbitals in a quintuple layer

Cu_x/Nb_x/Sr_x(PbSe)_x T T P1z+ P2z-Se(2) Bi(1') Se(1') Se(1')

K-independent sector

Irrep	Spin	Orbital	Parity	Matrix Form
<i>A</i> 1	Singlet	nglot Trivial		$\hat{ au}_0\otimes\hat{\sigma}_0(i\hat{\sigma}_2)$
T_{1g}			Liven	$\hat{ au}_3\otimes\hat{\sigma}_0(i\hat{\sigma}_2)$
A_{1u}	Triplet	Singlet	Odd	$\hat{ au}_2\otimes\hat{\sigma}_3(i\hat{\sigma}_2)$
A_{2u}	Singlet	Triplet	Odd	$\hat{ au}_1\otimes\hat{\sigma}_0(i\hat{\sigma}_2)$
$F_{\rm c}$	Triplet	Singlet	Odd	$i\hat{ au}_2\otimes\hat{\sigma}_1(i\hat{\sigma}_2)$
L_{u}	Tublet	Singlet	Ouu	$\hat{ au}_2\otimes\hat{\sigma}_2(i\hat{\sigma}_2)$

Odd parity \Rightarrow Nodes! [Sensitive to disorder]

Experiment/Theory

"Generalised Anderson's Theorem"

L. Andersen*, A. Ramires* et al., Sci. Adv. 6, eaay6502 (2020) B. Zinkl and A. Ramires, Phys. Rev. B 106, 014515 (2022)

Elena's Lecture

Two sublattices/layers: CeRh₂As₂

Cartoon picture:

"Trivial" Even-parity SC

B_z-robust Odd-parity SC

M. Sigrist et al., J. Phys. Soc. Jpn. 83, 061014 (2014)
T. Yoshida et al., Phys. Rev. B 86, 134514 (2012)
D. Maruyama et al., J. Phys. Soc. Jpn. 81, 034702 (2012)
D. Möckli and A. Ramires, Phys. Rev. Research 3, 023204 (2021)
D. Möckli and A. Ramires, Phys. Rev. B 104, 134517 (2021)

Elena's Lecture

Two sublattices/layers: CeRh₂As₂

Cartoon picture:

"Trivial" Even-parity SC

B_z-robust Odd-parity SC

Trivial pairing + Twist = Odd parity SC

w.r.t. an extra internal DOF [SL/layers/orbitals/...]

M. Sigrist et al., J. Phys. Soc. Jpn. 83, 061014 (2014)
T. Yoshida et al., Phys. Rev. B 86, 134514 (2012)
D. Maruyama et al., J. Phys. Soc. Jpn. 81, 034702 (2012)
D. Möckli and A. Ramires, Phys. Rev. Research 3, 023204 (2021)
D. Möckli and A. Ramires, Phys. Rev. B 104, 134517 (2021)

Elena's Lecture

Two sublattices/layers: CeRh₂As₂

Bz

Even-parity SC

Trivial pairing + Twist = Odd parity SC

w.r.t. an extra internal DOF [SL/layers/orbitals/...]

M. Sigrist et al., J. Phys. Soc. Jpn. 83, 061014 (2014) T. Yoshida et al., Phys. Rev. B 86, 134514 (2012) D. Maruyama et al., J. Phys. Soc. Jpn. 81, 034702 (2012) D. Möckli and A. Ramires, Phys. Rev. Research 3, 023204 (2021) D. Möckli and A. Ramires, Phys. Rev. B 104, 134517 (2021)

Khim et al., Science 373, 1012 (2021)

Successfully addresses the magnetic field anisotropy

Landaeta et al., PRX 12, 031001 (2022)

Some common themes...

S. Khim et al., Science **373**, 1012 (2021) S. Adenwalla et a., Phys. Rev. Lett. **65**, 2298 (1990) D. Aoki et al., J. Phys. Soc. Jpn. **89**, 053705 (2020) S. Ran et al., Nature Physics 15, 1250 (2019)

Some common themes...

- Phase diagrams with multiple SC phases are rare!
- Only observed in other two HF materials!
- Indication of unconventional SC state!

S. Khim et al., Science **373**, 1012 (2021) S. Adenwalla et a., Phys. Rev. Lett. **65**, 2298 (1990) D. Aoki et al., J. Phys. Soc. Jpn. **89**, 053705 (2020) S. Ran et al., Nature Physics 15, 1250 (2019)

Some common themes...

- Phase diagrams with multiple SC phases are rare!
- Only observed in other two HF materials!
- Indication of unconventional SC state!
- Common theme: sublattice DOF?!

T. Hazra et al., Phys. Rev. Lett. 130, 136002 (2023)

S. Khim et al., Science **373**, 1012 (2021) S. Adenwalla et a., Phys. Rev. Lett. **65**, 2298 (1990) D. Aoki et al., J. Phys. Soc. Jpn. **89**, 053705 (2020) S. Ran et al., Nature Physics 15, 1250 (2019)

Bibliography [group theory & superconductivity]

Phenomenological Theory of Unconventional Superconductivity

Manfred Sigrist and Kazuo Ueda Rev. Mod. Phys **63**, 239 (1991)

Symmetry aspects of Chiral Superconductors

Aline Ramires Contemporary Physics **63**(2), 71 (2022)

Nonunitary Superconductivity in Complex Quantum Materials

Aline Ramires J. Phys.: Condens. Matter **34** 304001(2022)

Still mystery after all these years -- Unconventional SC of Sr₂RuO₄

Yoshiteru Maeno, Shingo Yonezawa, Aline Ramires arXiv:2402.12117 [Invited review to appear in JPSJ]

Have we covered everything? Is the Sigrist-Ueda classification "complete"?

[Generalizations]

I) Multiple internal DOF

II) Nonsymmorphic systems [Space group]

A general space-group operation can be written as [Seitz notation]:

 $\{G|\mathbf{t}\}\$ Point

operation

Translation

A general space-group operation can be written as [Seitz notation]:

Translation

Examples:

$\{E \mid 0\}$	Identity
$\{G 0\}$	Pure point operation
$\{E \mid \mathbf{t}\}$	Pure translation

A general space-group operation can be written as [Seitz notation]:

Examples:

$\{E \mid 0\}$	Identity
$\{G 0\}$	Pure point operation
$\{E \mathbf{t}\}$	Pure translation

operation

Action on coordinates:

 $\{G \mid t\}\mathbf{r} = D_{3D}(G)\mathbf{r} + \mathbf{t}$

A general space-group operation can be written as [Seitz notation]:

Examples:

$\{E \mid 0\}$	Identity
$\{G 0\}$	Pure point operation
$\{E \mathbf{t}\}$	Pure translation

operation

Action on coordinates:

 $\{G \mid t\}\mathbf{r} = D_{3D}(G)\mathbf{r} + \mathbf{t}$

Composition:

 $\{G_1 | t_1\} \{G_2 | t_2\} = \{G_1 \cdot G_2 | G_1 t_2 + t_1\}$

[There are 230 space groups in 3D]

Ne	Crystal system,		Point group				Space groups (international short
<u>Ne</u>	(count), Bravais lattice	Int'l	Schön.	Orbifold	Cox.	Ord.	symbol)
1	Triclinic (2)	1	C ₁	11	[]+	1	P1
2	$\alpha \alpha \beta^{c}$	1	C _i	1×	[2+,2+]	2	Pī
3–5	Monoclinic	2	C ₂	22	[2]+	2	P2, P2 ₁ C2
6–9	(13)	m	Cs	*11	[]	2	Pm, Pc Cm, Cc
10–15	and be and be a second	2/m	C _{2h}	2*	[2,2+]	4	P2/m, P2 ₁ /m C2/m, P2/c, P2 ₁ /c C2/c
16–24		222	D ₂	222	[2,2]+	4	P222, P222 ₁ , P2 ₁ 2 ₁ 2, P2 ₁ 2 ₁ 2 ₁ , C222 ₁ , C222, F222, I222, I2 ₁ 2 ₁ 2 ₁ 2 ₁
25–46	Orthorhombic (59)	mm2	C _{2v}	*22	[2]	4	Pmm2, Pmc2 ₁ , Pcc2, Pma2, Pca2 ₁ , Pnc2, Pmn2 ₁ , Pba2, Pna2 ₁ , Pnn2 Cmm2, Cmc2 ₁ , Ccc2, Amm2, Aem2, Ama2, Aea2 Fmm2, Fdd2 Imm2, Iba2, Ima2
47–74		mmm	D _{2h}	*222	[2,2]	8	Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma Cmcm, Cmce, Cmmm, Cccm, Cmme, Ccce Fmmm, Fddd Immm, Ibam, Ibca, Imma

Continues with tetragonal, trigonal, hexagonal and cubic...

https://en.wikipedia.org/wiki/Space_group

A general space-group operation can be written as [Seitz notation]:

Translation

Examples:

 $\{E \mid \mathbf{0}\}$ Identity

operation

- $\{G | \mathbf{0}\}$ Pure point operation
- $\{E \mid \mathbf{t}\}$ Pure translation

Action on coordinates:

 $\{G \mid t\}\mathbf{r} = D_{3D}(G)\mathbf{r} + \mathbf{t}$

Composition:

 $\{G_1 \,|\, t_1\} \{G_2 \,|\, t_2\} = \{G_1 \,.\, G_2 \,|\, G_1 t_2 + t_1\}$

[There are 230 space groups in 3D]

No	Crystal system,		Point group				Space groups (international short
<u>Ne</u>	(count), Bravais lattice	Int'l	Schön.	Orbifold	Cox.	Ord.	symbol)
1	Triclinic (2)	1	C ₁	11	[]+	1	P1
2	$\alpha \alpha \beta c$	1	Ci	1x	[2+,2+]	2	Pī
3–5	Monoclinic	2	C ₂	22	[2]+	2	P2, P2 ₁ C2
6–9	(13)	m	Cs	*11	[]	2	Pm, Pc Cm, Cc
10–15	and a state of the	2/m	C _{2h}	2*	[2,2+]	4	P2/m, P2 ₁ /m C2/m, P2/c, P2 ₁ /c C2/c
16–24		222	D ₂	222	[2,2]+	4	P222, P222 ₁ , P2 ₁ 2 ₁ 2, P2 ₁ 2 ₁ 2 ₁ , C222 ₁ , C222, F222, I222, I2 ₁ 2 ₁ 2 ₁ 2 ₁
25–46	Orthorhombic (59)	mm2	C _{2v}	*22	[2]	4	Pmm2, Pmc2 ₁ , Pcc2, Pma2, Pca2 ₁ , Pnc2, Pmn2 ₁ , Pba2, Pna2 ₁ , Pnn2 Cmm2, Cmc2 ₁ , Ccc2, Amm2, Aem2, Ama2, Aea2 Fmm2, Fdd2 Imm2, Iba2, Ima2
47–74		mmm	D _{2h}	*222	[2,2]	8	Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma Cmcm, Cmce, Cmmm, Cccm, Cmme, Ccce Fmmm, Fddd Immm, Ibam, Ibca, Imma

Continues with tetragonal, trigonal, hexagonal and cubic...

https://en.wikipedia.org/wiki/Space_group

A general space-group operation can be written as [Seitz notation]:

Translation

Examples:

 $\{E \mid \mathbf{0}\}$ Identity

operation

- $\{G | \mathbf{0}\}$ Pure point operation
- $\{E \mid \mathbf{t}\}$ Pure translation

Action on coordinates:

 $\{G \mid t\}\mathbf{r} = D_{3D}(G)\mathbf{r} + \mathbf{t}$

Composition:

 $\{G_1 \,|\, t_1\} \{G_2 \,|\, t_2\} = \{G_1 \,.\, G_2 \,|\, G_1 t_2 + t_1\}$

Note: Order of the SG is infinite (translations!)

Definition: A glide plane consists of a reflection followed by a (non-primitive) translation parallel to the plane of reflection.

1D Example

Definition: A glide plane consists of a reflection followed by a (non-primitive) translation parallel to the plane of reflection.

1D Example

Definition: A glide plane consists of a reflection followed by a (non-primitive) translation parallel to the plane of reflection.

1D Example

PLV: Primitive Lattice Vector

Definition: A glide plane consists of a reflection followed by a (non-primitive) translation parallel to the plane of reflection.

1D Example

Definition: A glide plane consists of a reflection followed by a (non-primitive) translation parallel to the plane of reflection.

1D Example

PLV: Primitive Lattice Vector

Definition: A glide plane consists of a reflection followed by a (non-primitive) translation parallel to the plane of reflection.

1D Example

Definition: A glide plane consists of a reflection followed by a (non-primitive) translation parallel to the plane of reflection.

1D Example

2D Example

PLV: Primitive Lattice Vector
Compound space group operations (II) Screw axis: $\{R \mid \mathbf{t}_{\parallel}\}$

Definition: A screw axis consists of a rotation followed by a (nonprimitive) translation along the axis of rotation.

Compound space group operations (II) Screw axis: $\{R \mid \mathbf{t}_{\parallel}\}$

Definition: A screw axis consists of a rotation followed by a (nonprimitive) translation along the axis of rotation.

3D Example: Elemental Te [helical chains]

Compound space group operations (II) Screw axis: $\{R \mid t_{\parallel}\}$

Definition: A screw axis consists of a rotation followed by a (nonprimitive) translation along the axis of rotation.

Elena's Lecture

3D Example: Elemental Te [helical chains]

3D Example: CeRh₂As₂

[P3₁21]

Jairo's Lecture

Altermagnetism: Example of RuO₂

 $[I, C_{2z}, ...]$

[P4₂/mnm] Nonsymmorphic

https://phys.org/news/2022-11-anomalous-hall-effect-altermagnetic-ruthenium.html

Jairo's Lecture

Altermagnetism: Example of RuO₂

[P4₂/mnm] Nonsymmorphic

https://phys.org/news/2022-11-anomalous-hall-effect-altermagnetic-ruthenium.html

Jairo's Lecture

Altermagnetism: Example of RuO₂

https://phys.org/news/2022-11-anomalous-hall-effect-altermagnetic-ruthenium.html

Nonsymmorphic Space groups

Consider a space group G with operations $\{G | t\}$ which leave a given lattice invariant. We can rewrite each operation as:

 $\{G | \mathbf{t}\} = \{G | \mathbf{T}_{PLV} + \tilde{\mathbf{t}}\} = \{E | \mathbf{T}_{PLV}\}\{G | \tilde{\mathbf{t}}\}\$

Nonsymmorphic Space groups

Consider a space group G with operations $\{G | t\}$ which leave a given lattice invariant. We can rewrite each operation as:

$$\{G | \mathbf{t}\} = \{G | \mathbf{T}_{PLV} + \tilde{\mathbf{t}}\} = \{E | \mathbf{T}_{PLV}\}\{G | \tilde{\mathbf{t}}\}\$$

Definition:

If, by a suitable choice of origin we find that ALL elements of G have $\tilde{\mathbf{t}}=0$ the space group is called SYMMORPHIC

Nonsymmorphic Space groups

Consider a space group G with operations $\{G | t\}$ which leave a given lattice invariant. We can rewrite each operation as:

$$\{G | \mathbf{t}\} = \{G | \mathbf{T}_{PLV} + \tilde{\mathbf{t}}\} = \{E | \mathbf{T}_{PLV}\}\{G | \tilde{\mathbf{t}}\}\$$

Definition:

If, by a suitable choice of origin we find that ALL elements of G have $\tilde{\mathbf{t}}=0$ the space group is called SYMMORPHIC

If, by ANY choice of origin we find that AT LEAST ONE of the elements of G have $\tilde{\mathbf{t}} \neq 0$ the space group is called NONSYMMORPHIC

What happens to the irreps we found in the context of point groups?

 \Rightarrow Need to take translations into account!

What happens to the irreps we found in the context of point groups?

 \Rightarrow Need to take translations into account!

Translations in 3D: three sets of (infinite) Abelian subgroups

 \Rightarrow Infinite conjugacy classes = Infinite irreps

 \Rightarrow Bloch's functions are basis functions for the group of translations (labelled by momenta **k**)

What happens to the irreps we found in the context of point groups?

 \Rightarrow Need to take translations into account!

Translations in 3D: three sets of (infinite) Abelian subgroups

 \Rightarrow Infinite conjugacy classes = Infinite irreps

 \Rightarrow Bloch's functions are basis functions for the group of translations (labelled by momenta **k**)

Symmorphic groups: $D_k^{\Gamma_i}(\{R_\alpha | \mathbf{R}_n\}) = e^{i\mathbf{k} \cdot \mathbf{R}_n} D^{\Gamma_i}(R_\alpha),$ $\chi_{k}^{\Gamma_{i}}(\{R_{\alpha}|\boldsymbol{R}_{n}\}) = \mathrm{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{R}_{n}}\chi^{\Gamma_{i}}(R_{\alpha}).$

What happens to the irreps we found in the context of point groups?

 \Rightarrow Need to take translations into account!

Translations in 3D: three sets of (infinite) Abelian subgroups

 \Rightarrow Infinite conjugacy classes = Infinite irreps

 \Rightarrow Bloch's functions are basis functions for the group of translations (labelled by momenta **k**)

Symmorphic groups:

$$D_{k}^{\Gamma_{i}}(\{R_{\alpha}|\mathbf{R}_{n}\}) = e^{i\mathbf{k}\cdot\mathbf{R}_{n}}D^{\Gamma_{i}}(R_{\alpha}),$$
$$\chi_{k}^{\Gamma_{i}}(\{R_{\alpha}|\mathbf{R}_{n}\}) = e^{i\mathbf{k}\cdot\mathbf{R}_{n}}\chi^{\Gamma_{i}}(R_{\alpha}).$$

Nonsymmorphic groups: More complicated...but there are tables!

Nonsymmorphic symmetry Manifestation #1: Symmetry-protected band crossings

s-states in a diamond lattice [Fd-3m]

Hourglass fermions in KHgSb [P6₃/mmc]

S. M. Young et al., PRL 108, 140405 (2012)

S. Wang et al., Nature 532, 189 (2016)

Nonsymmorphic symmetry Manifestation #2: New OP connectivities in modulated systems

Band perspective

Fe-based SC [P4/nmm]

Cvektovik et al., Phys. Rev. B 88, 134510 (2013)

Nonsymmorphic symmetry Manifestation #2: New OP connectivities in modulated systems

Band perspective

Fe-based SC [P4/nmm]

Cvektovik et al., Phys. Rev. B 88, 134510 (2013)

OP perspective

CeRh₂As₂ [P4/nmm]

If a multi-component order parameter:

 $F_c = \gamma M_1 M_2 P + \dots$

$$E_{1/2m} \otimes E_{1/2m} = A_{1g} \oplus A_{2u} \oplus B_{2g} \oplus B_{1u}$$
$$E_{3/4m} \otimes E_{3/4m} = A_{1g} \oplus A_{1u} \oplus B_{2u} \oplus B_{2g}$$

A. Ramires and A. Szabo, arXiv.2309.05664 (2013)

Nonsymmorphic symmetry Manifestation #2: New OP connectivities in modulated systems

OP perspective

CeRh₂As₂ [P4/nmm]

If a multi-component order parameter:

 $F_c = \gamma M_1 M_2 P + \dots$

$$E_{1/2m} \otimes E_{1/2m} = A_{1g} \oplus A_{2u} \oplus B_{2g} \oplus B_{1u}$$
$$E_{3/4m} \otimes E_{3/4m} = A_{1g} \oplus A_{1u} \oplus B_{2u} \oplus B_{2g}$$

A. Ramires and A. Szabo, arXiv.2309.05664 (2013)

Band perspective

Fe-based SC [P4/nmm]

Cvektovik et al., Phys. Rev. B 88, 134510 (2013)

Nonsymmorphic symmetry Manifestation #3: New nodes at the BZ edge

Blount's Theorem:

"there are no line nodes in odd-parity superconductors in the presence of SOC"

E. I. Blount, Phys. Rev. B 32, 2935 (1985)

Nonsymmorphic symmetry Manifestation #3: New nodes at the BZ edge

Blount's Theorem:

"there are no line nodes in odd-parity superconductors in the presence of SOC"

E. I. Blount, Phys. Rev. B 32, 2935 (1985)

UPt₃ [P6₃/mmc]

M. R. Norman, PRB 52, 15093 (1995)

Nonsymmorphic symmetry Manifestation #3: New nodes at the BZ edge

M. R. Norman, PRB 52, 15093 (1995)

S. Kobayashi et al., PRB 94, 134512 (2016)
T. Micklitz et al., PRL 118, 207001 (2017)
T. Micklitz et al., PRB 95, 024508 (2017)
S. Sumita Ph.D. Thesis (2019)

Summary/Conclusion

Brief introduction to group theory concepts:

Group \Rightarrow Conjugacy Classes \Rightarrow Group Representation \Rightarrow Character \Rightarrow Irreducible Representations

Crystallographic Point Groups:

- \Rightarrow SC order parameter classification
- \Rightarrow Conventional/unconventional
- \Rightarrow Nematic/Chiral

Beyond the Sigrist-Ueda Classification:

- ⇒ Multiple internal DOFs (orbitals/layers/sublattices)
- \Rightarrow Nonsymmorphic symmetries

"Loopholes" to what we have thought were very well-established concepts and theorems in the field...are there more of them?

Homework!