Detecting and quantifying orbital magnetism in moiré quantum matter

Yulia Maximenko

Assistant Professor, Physics Department Colorado State University/NIST

SuperQmap ESSM24, 4/24/2024

National Institute of Standards and Technology U.S. Department of Commerce

Scanning tunneling microscopy

Classical vs Quantum?

Quantum tunneling

Scanning tunneling microscopy

Single atoms and molecules

Quantum properties with atomic resolution

@LuxisAlukard 2 years ago "Resolution of this movie is 50x30." "Pixels?" "Atoms"

π5

Reply

Quantum properties with atomic resolution

Sr₂RuO₄

STM of devices

- Controlling carriers
- Controlling *D/E* and *B*
- Mixing&matching 2D materials
- Atomically resolved local studies
- Measure LDOS, probe quantum states

LDOS a.k.a. dI/dV

Topographical image of WTe₂

LDOS a.k.a. dI/dV

Topographical image of WTe₂

Twisted (moiré) materials

Flat bands in moiré materials

Magic angle twisted graphene

Cao *et al.*, Nature **556**, 80 (2018) Cao *et al.*, Nature **556**, 43 (2018)

Quantum phases in twisted layers

- Unconventional superconductivity
- Correlated insulators
- Orbital magnetism and QAH
- Density waves
- Strange metal states
- Fractional Chern insulator

STM of twisted devices

- Local angle/moiré wavelength
- Local strain
- Local response to tunable parameters

Probing B=0 properties with Landau levels

Semiclassical theory of magnetic response NIST

Real space orbits enclose an integer multiple of φ_0

Integrated density of states

 $N(E_n) = S(E_n)/4\pi^2$

Landau quantization as a probe of E(k) NGT

B = 0 T

B > 0 T

Topology

Quantum geometry and magnetism

Q. geometry contribution to magnetic response NIST

All pieces come together

Twisted double bilayer graphene

Twisted double bilayer graphene

Electrostatically tunable bands

Tuning the twist angle

Ultra-low temperature scanning tunneling microscope

 Combined STM/AFM/Transport

> *T* = 10 mK *B*_⊥ = 15 T Δ*E* < 8 μeV

Schwenk *et al.*, Review of Scientific Instruments 91, 071101 (2020)

TDBG at 1.75° probed locally

NIST

STM imaging of TDBG moiré

NIST

Applying a displacement field

NS

STM "gate maps"

Comparison to (single-particle) theory

Electron and hole pockets in magnetic fields NIST

Electron and hole pockets in magnetic fields NIST

Extracting magnetic response functions

Geometric contributions

First order: orbital magnetic moment

2^d order correction – susceptibility

Average $m'(E_n) \sim 5 \,\mu\text{A/eV}$, m ~ $3\mu_B$

Paul Haney, NIST

Main points

- Landau level spectroscopy of narrow bands
- Tunable band structure in TDBG changes character from electron-like to hole-like
- Orbital magnetism and magnetic susceptibility detected and quantified

Thank you for your attention!

NIST team

Joseph Stroscio

Steve **Fereshte** Zhitenev Ghahari (GMU)Blankenship

NIST

Marlou Slot

Yulia Maximenko (CSU)

NIST:

Kim

Nikolai

Sungmin

Daniel Walkup

Dilek Yildiz En-Min Shih

External collaborators:

Theory: Yafis Barlas, University of Nevada, Reno Kenji Watanabe, Takashi Taniguchi (NIMS, Japan) hBN: Experiment: Bianca Simmet (on visit to NIST)

Sample Fab

Son Le (LPS)