

Josephson Junctions & Superconducting Quantum Interference Devices (SQUIDs)

Dieter Koelle

Physikalisches Institut, Center for Quantum Science (CQ) and Center for Light-Matter Interaction, Sensors & Analytics (LISA⁺)

European School on Superconductivity & Magnetism in Quantum Materials, 21-25 April 2024, Gandia (Valencia, Spain)

Tübingen (population ~90,000)

Part 1: Basic Properties of Josephson Junctions

Dieter Koelle

Physikalisches Institut, Center for Quantum Science (CQ) and Center for Light-Matter Interaction, Sensors & Analytics (LISA⁺)

European School on Superconductivity & Magnetism in Quantum Materials, 21-25 April 2024, Gandia (Valencia, Spain)

Motivation

 S_2

S₁

Josephson junction (JJ) = two weakly coupled superconductors ("weak link")

quantum mechanical coupling of the superconductor wave functions

e.g. phase-sensitive experiments on the order parameter symmetry of unconventional superconductors, based on interference effects

➡ JJ is the key element in superconducting electronics

large variety of devices for many applications, e.g.

- voltage standards,
- SQUID magnetometers,
- radiation detectors,
- qubits,
- ultrafast processors,

• • • •

I. Macroscopic Wave Function

- II. Josephson Relations & Consequences
- **III.** Josephson Junction in a Magnetic Field
- IV. Resistively & Capacitively Shunted Junction (RCSJ) model
- V. Fluctuations in Josephson Junctions
- **VI.** Classification of JJs Ground States: 0- π -, φ -Junctions

<u>Books:</u>

A. Barone & G. Paterno, Physics & Applications of the Josephson Effect, J. Wiley & Sons (1982)

K.K. Likharev, Dynamics of Josephson Junctions and Circuits, Gordon & Breach (1986)

T.P. Orlando, K.A. Delin, *Foundations of Applied Superconductivity*, Addison-Wesley (1991)

W. Buckel, R. Kleiner, Superconductivity, Wiley-VCH, 3rd ed. (2016)

Reviews:

K.K. Likharev, *Superconducting weak links*, Rev. Mod. Phys. **51**, 101 (1979)

A.A. Golubov, M.Yu. Kupriyanov, E. Il'ichev, *The current phase relation in Josephson junctions*, Rev. Mod. Phys. **76**, 411 (2004)

A.I. Buzdin, Proximity effects in superconductor-ferromagnet heterostructures, Rev. Mod. Phys. 77, 935 (2005)

a single (macroscopic) wave function describes the state of all Cooper pairs in a superconductor → highly correlated, coherent many-particle quantum state

ma

superconducting charge carriers: Cooper pairs (mobile electrons

phase φ determined by carrier velocity $v_{\rm s}$ & vector potential A(connected to magnetic field via relation for magnetic induction (flux density) $B = \nabla \times A$

$$\hbar \boldsymbol{\nabla} \varphi = m_{\rm s} \boldsymbol{v}_{\rm s} + q_{\rm s} \boldsymbol{A}$$

Cooper pair charge $\, q_{
m s} = 2e \,$ and mass $\, m_{
m s} = 2m_e \,$

croscopic wave function
$$\Psi = \Psi_0 \cdot e^{i\varphi}$$

amplitude $\Psi_0 = \sqrt{n_s}$ n_s : Cooper pair density

a single (macroscopic) wave function describes the state of all Cooper pairs in a superconductor → highly correlated, coherent many-particle quantum state

Cooper pairs highly correlated motion

supercurrent density:

$$\boldsymbol{j}_{\mathrm{s}} = q_{\mathrm{s}} n_{\mathrm{s}} \boldsymbol{v}_{\mathrm{s}} = rac{q_{\mathrm{s}} n_{\mathrm{s}}}{m_{\mathrm{s}}} \left(\hbar \boldsymbol{\nabla} \varphi - q_{\mathrm{s}} \boldsymbol{A}
ight)$$

with the definition of the gauge-invariant phase gradient

$$oldsymbol{
abla} \phi \equiv oldsymbol{
abla} arphi - rac{q_{
m s}}{\hbar}oldsymbol{A}$$
 or $oldsymbol{
abla} \phi \equiv oldsymbol{
abla} arphi - rac{2\pi}{\Phi_0}oldsymbol{A}$

 $m{j}_{
m s}=rac{q_{
m s}\hbar}{m_{
m s}}\,n_{
m s}\,m{
abla}\phi$ i.e. $m{j}_{
m s}\propto n_{
m s}m{
abla}\phi$

integration of $\nabla \phi \equiv \nabla \varphi - \frac{2\pi}{\Phi_0} A \implies$ gauge-invariant phase

$$\phi(\boldsymbol{r}) = \varphi(\boldsymbol{r}) - \frac{2\pi}{\Phi_0} \int_{\boldsymbol{r}_0}^{\boldsymbol{r}} \boldsymbol{A} d\boldsymbol{r}$$

Weakly Coupled Superconductors

consider now two superconductors S_1 , S_2 with macroscopic wave functions

$$\Psi_i = \Psi_{0,i} \cdot e^{i\varphi_i} \quad (i = 1, 2)$$

What is the relation between the wave functions Ψ_i (phases φ_i) if the two superconductors are coupled via a weak link?

(e.g. via insulating (I) tunnel barrier in a SIS junction)

EBERHARD KARLS

LUBINGEN

finite coupling $\langle m \rangle$ overlap of the wave functions Ψ_i

➡ supercurrent through weak link (across barrier)

- I. Macroscopic Wave Function
- II. Josephson Relations & Consequences
- **III.** Josephson Junction in a Magnetic Field
- **IV.** Resistively & Capacitively Shunted Junction (RCSJ) model
- **V.** Fluctuations in Josephson Junctions
- **VI.** Classification of JJs Ground States: 0- π -, ϕ -Junctions

connect phase of the wave functions to current *I* and voltage *U* across weak link

derivation by solving Schrödinger Eq. for two coupled quantum mechanical systems \rightarrow Feynman

Alternative: following general arguments by Landau & Lifschitz

B. D. Josephson Nobel prize physics 1973

assume

- barrier in (*y*,*z*) plane
- constant current density in (y,z)
- constant phase gradient and n_s in the S₁, S₂ electrodes

B.D. Josephson, *Possible new effects in superconductive tunneling*, Phys. Lett. 1, 251 (1962)
R.P. Feynman, R.B. Leighton, M. Sands, *Feynman Lectures on Physics 3*, Addison-Wesley (1965)
L.D. Landau, E.M. Lifschitz, *Lehrbuch der Theoretischen Physik IX*, Akademie-Verlag (1980)
W. Buckel, R. Kleiner, *Superconductivity*, Wiley-VCH, 3rd ed. (2016)

for current / along x and cross section A_J=const $j_{\rm s}(x)=I/A_{\rm J}=const$

i.e., because of
$$j_{\rm s} \propto n_{\rm s} \nabla \phi \implies n_{\rm s}(x) \cdot \frac{\partial \phi}{\partial x}(x) = const$$

a change in n_s at weak link has to be compensated by change in $\partial \phi / \partial x$

suppressed n_s at barrier \rightarrow dip in $n_s(x)$

 $\phi(x)$ makes a step

weak link is characterized by a phase difference

$$\delta \equiv \phi_2 - \phi_1 = \varphi_2 - \varphi_1 - \frac{2\pi}{\Phi_0} \int_1^2 A_x \mathrm{d}x$$

integral across barrier

analogous to $j_s \propto \nabla \phi$ in the bulk superconductor, j_s across the weak link is a function of the phase difference

$$oldsymbol{j}_{\mathrm{s}}=oldsymbol{j}_{\mathrm{s}}(\delta)$$

Question: what is the functional dependence of j_s (δ) ?

- from simple considerations:
- phases φ_i in the electrodes are defined modulo 2π (phase change of 2πn (n: integer) does not change Ψ_i)

$$\Rightarrow j_s = 2\pi$$
-periodic function of δ

$$j_{\rm s} = \sum_{n} j_{0n} \sin n\delta + \sum_{n} \tilde{j}_{0n} \cos n\delta \qquad (n = 1, 2, \ldots)$$

• time reversal symmetry: $j_s(\delta) = -j_s(-\delta)$ (both, currents and phases (~ ωt) change sign upon time reversal)

excludes cosine terms

• rapid convergence of sin-series (e.g. for conventional SIS junctions)

$$j_{\rm s} = j_0 \, \sin \delta$$

1. Josephson relation (current-phase relation = CPR)

Question: what is the evolution of
$$\delta$$
 in time ?
take time derivative of gauge-invariant phase difference $\delta = \varphi_2 - \varphi_1 - \frac{2\pi}{\Phi_0} \int_1^2 \mathbf{A} \cdot d\mathbf{l}$
 $\frac{\partial \delta}{\partial t} = \frac{\partial \varphi_2}{\partial t} - \frac{\partial \varphi_1}{\partial t} - \frac{2\pi}{\Phi_0} \frac{\partial}{\partial t} \int_1^2 \mathbf{A} \cdot d\mathbf{l}$
with energy-phase relation $-\hbar \frac{\partial \varphi}{\partial t} = \frac{\mu_0 \lambda_L^2}{2n_s} \mathbf{j}_s^2 + q_s \tilde{\phi}$ (derived from Schrödinger equation
for n_s =const in the electrodes)
with London penetration depth $\lambda_L = \left(\frac{m_s}{\mu_0 q_s^2 n_s}\right)^{1/2}$ and electrochemical potential $\tilde{\phi}$
 $\frac{\partial \delta}{\partial t} = -\frac{1}{\hbar} \left(\frac{\mu_0 \lambda_L^2}{2n_s} \left[\mathbf{j}_s^2(2) - \mathbf{j}_s^2(1) \right] + q_s \left[\tilde{\phi}_2 - \tilde{\phi}_1 \right] \right) - \frac{2\pi}{\Phi_0} \frac{\partial}{\partial t} \int_1^2 \mathbf{A} \cdot d\mathbf{l}$
 $= 0$ (current continuity)
 $\frac{\partial \delta}{\partial t} = \frac{2\pi}{\Phi_0} \int_1^2 \left(-\nabla \tilde{\phi} - \frac{\partial \mathbf{A}}{\partial t} \right) \cdot d\mathbf{l} \implies \frac{\partial \delta}{\partial t} \equiv \left[\hat{\delta} = \frac{2\pi}{\Phi_0} \mathbf{U} \right]$ 2. Josephson relation
(voltage-phase relation)
voltage across junction

T.P. Orlando, K.A. Delin, Foundations of Applied Superconductivity, Addison-Wesley (1991)

Consequences of Josephson Relations

EBERHARD KARLS

VERSITAT

INIVERSITAT TUBINGEN Consequences of Josephson Relations

2. finite voltage state (dynamic case) $U \neq 0$

for U = const integrate 2nd Josephson Eq. $\delta(t) = \delta_0 + 2\pi \frac{U}{\Phi_0} t$

insert into 1st Josephson Eq. $j_{\rm s} = j_0 \sin\{\delta_0 + 2\pi f_{\rm J}t\}$

Cooper pair current across junction oscillating with the Josephson frequency

$$f_{\rm J} \equiv \frac{U}{\Phi_0} \approx 483.6 \, \frac{\rm GHz}{\rm mV} \cdot U$$

quantum interference of the wave functions across the barrier

- I. Macroscopic Wave Function
- II. Josephson Relations & Consequences

- IV. Resistively & Capacitively Shunted Junction (RCSJ) model
- **V.** Fluctuations in Josephson Junctions
- **VI.** Classification of JJs Ground States: 0- π -, ϕ -Junctions

field *H* applied in the JJ plane (rectangular barrier)

magnetic flux density **B** penetrates into electrodes

 \rightarrow effective magnetic thickness:

 $d_{\rm eff} \approx d_{\rm b} + 2\lambda_{\rm L}$

for identical electrode materials with thickness $~~d_{
m e}\gtrsim 2\lambda_{
m L}$

for different electrode materials with thickness $d_{e,i}$:

$$d_{\rm eff} \equiv d_{\rm b} + \lambda_{{\rm L},1} \tanh \frac{d_{{\rm e},1}}{\lambda_{{\rm L},1}} + \lambda_{{\rm L},2} \tanh \frac{d_{{\rm e},2}}{\lambda_{{\rm L},2}}$$

integrate abla arphi along dotted lines in the two electrodes

$$\begin{array}{ll} \text{path } \mathbf{2} \rightarrow \mathbf{1}: \qquad \varphi(1) - \varphi(2) = \frac{2\pi}{\Phi_0} \mu_0 \lambda_{\mathrm{L}}^2 \int_2^1 \boldsymbol{j}_{\mathrm{s}} \, \mathrm{d}\boldsymbol{l} + \frac{2\pi}{\Phi_0} \int_2^1 \boldsymbol{A} \, \mathrm{d}\boldsymbol{l} \\ \\ \text{path } \mathbf{1}' \rightarrow \mathbf{2}': \qquad \varphi(2') - \varphi(1') = \frac{2\pi}{\Phi_0} \mu_0 \lambda_{\mathrm{L}}^2 \int_{1'}^{2'} \boldsymbol{j}_{\mathrm{s}} \, \mathrm{d}\boldsymbol{l} + \frac{2\pi}{\Phi_0} \int_{1'}^{2'} \boldsymbol{A} \, \mathrm{d}\boldsymbol{l} \end{array}$$

 $\frac{\partial \delta}{\partial x} = \frac{2\pi}{\Phi_0} B d_{\text{eff}}$

for thick enough electrodes in the Meissner state

General case: applied field *H* can be screened by supercurrents flowing across the JJ

with Ampere's law $oldsymbol{
abla} imes oldsymbol{B} = \mu_0 oldsymbol{j}$

for our geometry $m{B}=B_y \hat{m{e}}_y$: $\frac{\partial B_y(x)}{\partial x}=\mu_0 j_z(x)$

combined with
$$\frac{\partial \delta}{\partial x} = \frac{2\pi}{\Phi_0} B_y d_{\text{eff}} \implies \frac{\partial^2 \delta}{\partial x^2} = \frac{2\pi}{\Phi_0} d_{\text{eff}} \frac{\partial B_y}{\partial x} = \frac{1}{\lambda_J^2} \frac{j_z(x)}{j_0} = \frac{1}{\lambda_J^2} \sin \delta(x)$$

with the Josephson length $\lambda_J \equiv \left(\frac{\Phi_0}{2\pi\mu_0 d_{\text{eff}} j_0}\right)^{1/2}$ Ferrel-Prange Eq.
for small applied fields: $\frac{\partial^2 \delta}{\partial x^2} = \frac{1}{\lambda_J^2} \delta(x) \implies \delta(x) = \delta(0) e^{-\frac{x}{\lambda_J}}$
 $\left(\frac{\partial \delta}{\partial x} \ll \frac{1}{\lambda_J}\right) \implies \delta(x) = B_y(0) e^{-\frac{x}{\lambda_J}}$

 λ_J is the characteristic length over which a JJ can screen external magnetic fields (similar to λ_L in a bulk superconductor)

Short JJ in a Magnetic Field

"short junction" limit:

size of JJ along direction $\perp H$

$$a \lesssim 4\lambda_{\rm J}$$

magnetic flux in the JJ:

 $\Phi_{\rm J} = B \, d_{\rm eff} \, a$

integration of
$$\frac{\partial \delta}{\partial x} = \frac{2\pi}{\Phi_0} B d_{\text{eff}}$$
 along $x \quad \Longrightarrow \quad \delta(x) = \delta_0 + \frac{2\pi}{\Phi_0} B d_{\text{eff}} x$

δ(x) grows linearly along barrier (slope determined by $B=\mu_0H$)

Short JJ in a Magnetic Field

Short JJ in a Magnetic Field

magnetic field $\mu_0 H (mT)$

total supercurrent
$$I_{s}$$
 through the JJ \rightarrow integrate $j_{s}(x)$ over JJ area $A_{J} = ab$
 $I_{s}(\Phi_{J}, \delta_{0}) = \int_{0}^{b} dy \int_{0}^{a} dx j_{0} \sin \delta(x) = -j_{0} \cdot b \cdot \frac{\cos\left(\delta_{0} + \frac{2\pi}{\Phi_{0}}Bd_{\text{eff}}x\right)}{\left(\frac{2\pi}{\Phi_{0}}Bd_{\text{eff}}\right)} \Big|_{0}^{a}$
 $\Phi_{J} = B d_{\text{eff}} a = \underbrace{j_{0} \cdot b \cdot a}_{I_{0}} \cdot \frac{\sin \pi \frac{\Phi_{J}}{\Phi_{0}}}{\pi \frac{\Phi_{J}}{\Phi_{0}}} \cdot \sin(\delta_{0} + \pi \frac{\Phi_{J}}{\Phi_{0}})$ for given $I_{s}, \Phi_{J} \rightarrow \delta_{0}$ adjusts accordingly
magnetic flux Φ/Φ_{0}
 $maximum supercurrent I_{c} through the JJ:
 $\rightarrow \sin(\delta_{0} + \pi \frac{\Phi_{J}}{\Phi_{0}}) = \pm 1$
 $Fraunhofer pattern$
(analogous to diffraction at single slit in optics)
 $H_{s}(\Phi_{J}) = I_{0} \cdot \left| \frac{\sin \pi \frac{\Phi_{J}}{\Phi_{0}}}{\pi \frac{\Phi_{J}}{\Phi_{0}}} \right|$$

- I. Macroscopic Wave Function
- II. Josephson Relations & Consequences
- **III.** Josephson Junction in a Magnetic Field

IV. Resistively & Capacitively Shunted Junction (RCSJ) model

- V. Fluctuations in Josephson Junctions
- **VI.** Classification of JJs Ground States: 0- π -, φ -Junctions

RCSJ Model & Washboard Potential

resistively and capacitively shunted junction (RCSJ)

⇒ simple model to describe dynamics of JJs
 → current voltage characteristics (IVC)

EBERHARD KARLS

UNIVERSITÄT Tübingen

- Josephson current
- displacement current $I_{\rm d} = CU$ across junction capacitance C

 $I_{\rm s} = I_0 \sin \delta$

 $I_{\rm qp} = U/R$

 $I_{\rm N}(t)$

- dissipative (quasiparticle) current ohmic current through shunt resistor R
 - current noise source thermal noise of shunt resistor *R* at temperature *T*, with spectral density $S_I(f) = \frac{4k_BT}{R}$

W.C. Stewart, *Current-voltage characteristics of Josephson junctions*, Appl. Phys. Lett. **12**, 277 (1968) D.E. McCumber, *Effect of ac impedance on dc voltage-current characteristics of Josephson junctions*, J. Appl. Phys. **39**, 3113 (1968)

RCSJ Model & Washboard Potential

EBERHARD KARLS

RCSJ Model & Washboard Potential

rearrange Eq. of motion for δ (for simplicity we set *T*=0, i.e. $I_{\rm N}$ =0) $\frac{\Phi_0}{2\pi}C\ddot{\delta} + \frac{\Phi_0}{2\pi}\frac{1}{R}\dot{\delta} = -I_0\sin\delta + I \equiv -\frac{2\pi}{\Phi_0}\frac{\partial U_{\rm J}}{\partial\delta}$

with the **tilted washboard potential** $U_{\rm J} \equiv E_{\rm J} \{1 - \cos \delta - i \ \delta\}$

Josephson coupling energy $E_{\rm J}\equiv rac{I_0\Phi_0}{2\pi}$ normalized bias current $i\equiv rac{I}{I_0}$

analogous system: point-like particle in the tilted washboard potential

$$\begin{split} m\ddot{x} + \xi \dot{x} &= -\frac{\partial \left\{ W(x) - F_{\mathrm{d}} x \right\}}{\partial x} & U_{J} \\ \hline \\ mass m \\ friction \ coeff. \ \xi \\ force \ F_{\mathrm{d}} \\ velocity \ \dot{x} & \delta \ \frac{\Phi_{0}}{2\pi} = U \\ \end{split}$$

static case:

"particle" is trapped in potential minimum $\langle \dot{\delta}
angle \propto V = 0$

dynamic case:

"particle" rolls down the tilted potential

 $\langle \dot{\delta} \rangle \propto V \neq 0$

potential minima disappear at $i = 1 \Leftrightarrow I = I_0$ i.e. when critical current I_0 is reached

for large tilt
$$F_{\rm d} \gg \frac{\partial W(x)}{\partial x} \implies \dot{x} = \frac{F_{\rm d}}{\xi}$$

i.e. for $I \gg I_0 \implies V = IR$

Effect of Damping in the RCSJ Model

EBERHARD KARLS

TÜBINGEN

$$\beta_C \ddot{\delta} + \dot{\delta} + \sin \,\delta = i + i_N$$

 $\beta_C \equiv \frac{2\pi}{\Phi_0} I_0 R^2 C$

$$i\equivrac{I}{I_0}$$
 , $i_{
m N}\equivrac{I_{
m N}}{I_0}$

Τ___

characteristic voltage $(I_0 R \text{ product}) V_c \equiv I_0 R$

characteristic frequency

$$\omega_{\rm c} \equiv \frac{2\pi}{\Phi_0} I_0 R$$

normalized time $\tau \equiv t\omega_{\rm c}$

decrasing / from I>I₀:

strong damping: friction term δ dominates, i.e. $\beta_{\rm C} \ll 1$

particle gets retrapped at $/=I_0$

non-hysteretic IVC

weak damping: inertial term δ dominates, i.e. $\beta_{\rm C} \gg 1$

particle gets retrapped at $/=I_r < I_0$

hysteretic IVC

UNIVERSITAT TÜBINGEN **Microwave Absorption: Shapiro Steps**

apply alternating current in addition to dc current $I_{tot} = I + I_{ac} \sin \omega_{ac} t$

\implies regimes of constant voltage V_n in the IVC = Shapiro steps

UNIVERSITAT TUBINGEN Microwave Absorption: Shapiro Steps

illustrative interpretation with particle in tilted washboard potential

motion of the "particle" synchronizes with the external drive

change of δ by $2\pi\,n\quad (n=1,2,\ldots)$ per excitation period $\,T_{
m ac}=1/f_{
m ac}$

$$f_{\rm ac} = 2\pi\omega_{\rm ac}$$

velocity
$$\dot{\delta}_n = \frac{2\pi n}{T_{\rm ac}} = 2\pi n f_{\rm ac}$$

stable within some intervall of applied dc current *I*

steps of constant voltage V_n on IVC at

$$V_n = \frac{\Phi_0}{2\pi} \dot{\delta}_n = n \Phi_0 f_{\rm ac}$$

equidistant Shapiro steps with separation

$$\Delta V = V_{n+1} - V_n = \Phi_0 f_{\rm ac} \approx \frac{1 \,\mathrm{mV}}{483.6 \,\mathrm{GHz}} \cdot f_{\rm ac}$$

UNIVERSITAT TUBINGEN Josephson Normal: Voltage Standard

reproducible voltages with relative uncertainty < 1 : 10¹⁰, corresponds to 1 nV at 10 V)

- I. Macroscopic Wave Function
- II. Josephson Relations & Consequences
- **III.** Josephson Junction in a Magnetic Field
- IV. Resistively & Capacitively Shunted Junction (RCSJ) model
- V. Fluctuations in Josephson Junctions
- **VI.** Classification of JJs Ground States: 0- π -, φ -Junctions

Thermal noise

What is the effect of finite temperature *T*?

for a JJ described within the RCSJ model:

$$\frac{\Phi_0}{2\pi}C\ddot{\delta} + \frac{\Phi_0}{2\pi}\frac{1}{R}\dot{\delta} = -I_0\sin\delta + I + I_N \equiv -\frac{2\pi}{\Phi_0}\frac{\partial U_J}{\partial\delta}$$

noise current acts as a stochastic force \rightarrow Langevin Eq.

induces fluctuating tilt of the washboard potential

$$U_{\rm J} \equiv E_{\rm J} \{ 1 - \cos \delta - (i + i_{\rm N}^{\bullet}) \delta \} \qquad i_{\rm N} \equiv I_{\rm N} / I_0$$
UNIVERSITAT **Fluctuations in Josephson Junctions**

for $I \leq I_0$ fluctuations can lead to $I + I_N(t) > I_0$ \implies voltage pulses U(t)with V>0

 $E_{\rm J}$: Josephson coupling energy = amplitude of washboard potential

Fluctuations in Josephson Junctions

$$\Gamma = \frac{2\pi k_{\rm B}T}{I_0 \Phi_0} = \frac{2\pi k_{\rm B}T/\Phi_0}{I_0} = \frac{I_{\rm th}}{I_0}$$

thermal fluctuations "destroy" Josephson coupling

regime of small thermal fluctuations:

 $\Gamma \ll 1$

corresponds to $I_0 \gg I_{\rm th} = \frac{2\pi}{\Phi_0} k_{\rm B} T \propto T$

significant suppression of "measurable I_c already at Γ =10⁻² !

for
$$T$$
= 4.2 K: $I_{th} \sim 0.18 \ \mu A$
for T = 77 K: $I_{th} \sim 2.3 \ \mu A$

UNIVERSITAT TUBINGEN Fluctuations in Josephson Junctions

Low-frequency excess noise: 1/f noise

description of tunnel junctions by parameter fluctuations rather than Langevin force

origin:

fluctuations in I_0 due to trapping and release of electrons at defects in the tunnel barrier (change barrier height, and hence I_0 , (also R))

single trap:

random switching of I_0 between two values with difference δI_0 and effective lifetime τ

with Lorentzian spectral density

 $S_I(f) = \frac{(\delta I_0)^2 \cdot \tau}{1 + (2\pi\tau \cdot f)^2}$

with $\tau^{-1} \equiv \tau_1^{-1} + \tau_2^{-1}$ for mean life times $\tau_1 = \tau_2$ in the two states

random telegraph signal (RTS)

R. Gross, B. Mayer, Physica C 180, 235 (1991)

V(t) of grain boundary junction at $I=1.2 I_0$

C.T. Rogers & R.A. Burman, *Composition of 1/f noise in metal-insulator-metal tunnel junctions*, Phys. Rev. Lett. **53**, 1272 (1984)

EBERHARD KARLS **Fluctuations in Josephson Junctions** UNIVERSITAT TÜBINGEN

for thermally activated trapping processes

$$\tau = \tau_0 \, \exp\left(\frac{E}{k_{\rm B}T}\right)$$

with τ_0 =const, and activation energy E

superposition of several (or many) traps

 $S(f) \propto \int dE D(E) \left| \frac{\tau_0 e^{\overline{k_{\rm B}T}}}{1 + (2\pi f \tau_0)^2 e^{\frac{2E}{k_{\rm B}T}}} \right|$ distribution function peak at $\tilde{E} \equiv k_{\rm B}T \ln\{\frac{1}{2\pi f \tau_0}\}$ for given T, only traps contribute with

e.g. τ_0 =0.1 s, and *E*=1.8 meV for Nb-AIO_v-Nb tunnel JJs

B. Savo, F.C. Wellstood, J. Clarke, Appl. Phys. Lett. 50, 1757 (1987)

> for broad distribution D(E)with respect to $k_{\rm B}T$: take $D(\tilde{E})$ out of the integral 1

$$\implies S(f) \propto k_{\rm B} T D(\tilde{E}) \frac{1}{f}$$

 $\tilde{E} - k_{\rm B}T \lesssim E \lesssim \tilde{E} + k_{\rm B}T$

P. Dutta, P.M. Horn, Low-frequency fluctuations in solids: 1/f noise, Rev. Mod. Phys. 53, 497 (1981); M.B. Weissman, 1/f noise and other slow, nonexponential kinetics in condensed matter, Rev.Mod.Phys. 60, 537 (1988)

superposition of several (or many) traps

the superposition of only few traps already yields $S(f) \propto rac{1}{f}$

P. Dutta, P.M. Horn, *Low-frequency fluctuations in solids: 1/f noise*, Rev. Mod. Phys. **53**, 497 (1981); M.B. Weissman, *1/f noise and other slow, nonexponential kinetics in condensed matter*, Rev.Mod.Phys. **60**, 537 (1988)

- I. Macroscopic Wave Function
- II. Josephson Relations & Consequences
- **III.** Josephson Junction in a Magnetic Field
- **IV.** Resistively & Capacitively Shunted Junction (RCSJ) model
- **V.** Fluctuations in Josephson Junctions

VI. Classification of JJs – Ground States: 0- π -, φ -Junctions

DEBERHARD KARLS VINITENEN INDEX State **Description:** The provided and the provided

JJs with Different Ground States

The **Josephson energy** $U_J(\delta)$ can be derived for any CPR, i.e. $I_s(\delta)$: Increase current I_s in time $t \rightarrow$ change of $\delta(t) \rightarrow$ finite voltage U

EBERHARD KARLS

TÜBINGEN

VFRSITÄT

JJs with Different Ground States

JJs with Different Ground States

T. Ortlepp et al., Science 312, 1495 (2006)

RSFQ: rapid single flux quantum

φ-JJ: Tunable Bistable System

φ-JJ: Two Critical Currents

φ -JJ Application: φ bit (memory cell)

Macroscopic Wave Function → coherent state of Cooper pairs Weak coupling of two condensates

→ Josephson Relations & Consequences (static & dynamic cases)

- Static case:

Josephson Junction in a Magnetic Field $\rightarrow I_c(H)$ Fraunhofer pattern for short JJs

- Dynamic case:

Resistively & Capacitively Shunted Junction (RCSJ) model → I-V-characteristics (particle in the tilted washboard potential)

Fluctuations in Josephson Junctions \rightarrow thermal noise & I_c fluctuations important for device applications , e.g. SQUIDS

Classification of JJs – Ground States: 0- π -, φ -Junctions → new applications: phase batteries, memory devices, qubits,...

Part 2: Superconducting Quantum Interference Devices: Basic Properties & Applications of SQUIDs

Dieter Koelle

Physikalisches Institut, Center for Quantum Science (CQ) and Center for Light-Matter Interaction, Sensors & Analytics (LISA⁺)

European School on Superconductivity & Magnetism in Quantum Materials, 21-25 April 2024, Gandia (Valencia, Spain)

I. SQUIDs: Basics & principle of operation

- **II.** Practical devices and readout
- **III.** SQUID applications
 - a. Magnetometry, Susceptometry
 - b. Biomagnetism: MEG, low-field MRI
 - c. Scanning SQUID microscopy
 - d. magnetic nanoparticle (MNP) detection

The SQUID Handbook, **Vol. I Fundamentals and Technology of SQUIDs and SQUID Systems**, J. Clarke, A. I. Braginski (eds.) Wiley-VCH, Weinheim (2004)

The SQUID Handbook, Vol. II Applications of SQUIDs and SQUID Systems, J. Clarke, A. I. Braginski (eds.) Wiley-VCH, Weinheim (2006)

Direct current (dc) SQUID

- applied combines magnetic flux Josephson junction interfere
- fluxoid quantization in a superconducting ring
- Josephson effect in superconducting weak links

interference of superconductor wavefunction

dc SQUID

 $\Psi = \Psi_0 \cdot e^{i\varphi}$

 \rightarrow 2 junctions intersect SQUID loop

interference at double slit

B •

dc SQUID Basics: Fluxoid Quantization

fluxoid quantization:
$$2\pi n = \oint \nabla \varphi \, dl$$
 $n = 1, 2, 3 \dots$

with the phase gradient in the ring segments

$$oldsymbol{
abla} oldsymbol{
abla} oldsymbol{
abla} = rac{2\pi}{\Phi_0} \left(oldsymbol{A} + \mu_0 \lambda_{
m L}^2 oldsymbol{j}_{
m s}
ight)$$

and the phase difference across the junctions

$$\delta = \varphi_b - \varphi_a - \frac{2\pi}{\Phi_0} \int_a^b \boldsymbol{A} \, \mathrm{d}\boldsymbol{l}$$

calculation as for the determination of $\delta(x)$ in a single JJ in an applied magnetic field:

path 2→1:
$$\int_{2}^{1} \nabla \varphi \, \mathrm{d}\boldsymbol{l} = \frac{2\pi}{\Phi_{0}} \int_{2}^{1} \boldsymbol{A} \, \mathrm{d}\boldsymbol{l} + \frac{2\pi}{\Phi_{0}} \mu_{0} \lambda_{\mathrm{L}}^{2} \int_{2}^{1} \boldsymbol{j}_{\mathrm{s}} \, \mathrm{d}\boldsymbol{l}$$

JJ2

path 1'
$$\rightarrow$$
2': $\int_{1'}^{2'} \nabla \varphi \, \mathrm{d}\boldsymbol{l} = \frac{2\pi}{\Phi_0} \int_{1'}^{2'} \boldsymbol{A} \, \mathrm{d}\boldsymbol{l} + \frac{2\pi}{\Phi_0} \mu_0 \lambda_\mathrm{L}^2 \int_{1'}^{2'} \boldsymbol{j}_\mathrm{s} \, \mathrm{d}\boldsymbol{l}$

path 1
$$\rightarrow$$
 1': $\int_{1}^{1'} \nabla \varphi \, \mathrm{d}\boldsymbol{l} = \varphi_{1'} - \varphi_1 = \delta_1 + \frac{2\pi}{\Phi_0} \int_{1}^{1'} \boldsymbol{A} \, \mathrm{d}\boldsymbol{l}$

path 2'
$$\rightarrow$$
 2: $\int_{2'}^{2} \nabla \varphi \, \mathrm{d}\boldsymbol{l} = -(\varphi_{2'} - \varphi_2) = -(\delta_2 + \frac{2\pi}{\Phi_0} \int_{2}^{2'} \boldsymbol{A} \, \mathrm{d}\boldsymbol{l})$

dc SQUID Basics: Fluxoid Quantization

inserted into
$$2\pi n = \oint \nabla \varphi \, \mathrm{d} l$$
 yields:
 $2\pi n = \delta_1 - \delta_2 + \frac{2\pi}{\Phi_0} \left\{ \oint A \, \mathrm{d} l + \mu_0 \lambda_{\mathrm{L}}^2 \left(\int_2^1 \boldsymbol{j}_{\mathrm{s}} \, \mathrm{d} l + \int_{1'}^{2'} \boldsymbol{j}_{\mathrm{s}} \, \mathrm{d} l \right) \right\}$
 $= \int B \, \mathrm{d} \boldsymbol{f} = \Phi$
 $\int_2^1 + \int_{1'}^{2'} = \oint_{C'}$
 $\delta_2 - \delta_1 + 2\pi n = \frac{2\pi}{\Phi_0} \left\{ \Phi + \mu_0 \lambda_{\mathrm{L}}^2 \oint_{C'} \boldsymbol{j}_{\mathrm{s}} \, \mathrm{d} l \right\} \equiv \frac{2\pi}{\Phi_0} \Phi_{\mathrm{tot}}$
 $\equiv \Phi_{\mathrm{tot}}$ total flux

dc SQUID Basics: Fluxoid Quantization

what is the maximum supercurrent $I_c(\Phi_{\mathrm{a}})$? I_2 $I_1 = I_{0,1} \sin \delta_1$ $I_2 = I_{0,2} \sin \delta_2$ lacksquarewith $\sin \alpha + \sin \beta = 2\cos(\frac{\beta - \alpha}{2}) \cdot \sin(\frac{\alpha + \beta}{2})$ assume symmetric SQUID: $I_{0,1} = I_{0,2} = I_0$ $I = I_1 + I_2 = \overset{\mathbf{v}}{I_0} (\sin \delta_1 + \sin \delta_2) = 2I_0 \cos \left(\frac{\delta_2 - \delta_1}{2}\right) \cdot \sin \left(\frac{\delta_1 + \delta_2}{2}\right)$ with $\delta_2 = \frac{2\pi}{\Phi_0} \Phi_{\text{tot}} + \delta_1 - 2\pi n$ $I = 2I_0 \cos\left(\frac{\pi \Phi_{\text{tot}}}{\Phi_0} - \pi n\right) \cdot \sin\left(\frac{\pi \Phi_{\text{tot}}}{\Phi_0} + \delta_1 - \pi n\right)$ with $\cos(\alpha - \pi n) \cdot \sin(\beta - \pi n) = \cos(\alpha) \cdot \sin(\beta)$ $I = 2I_0 \cos\left(\frac{\pi\Phi_{\text{tot}}}{\Phi_0}\right) \cdot \sin\left(\frac{\pi\Phi_{\text{tot}}}{\Phi_0} + \delta_1\right)$

now maximize by proper choice of δ_1 : $I = 2I_0 \cos\left(\frac{\pi \Phi_{\text{tot}}}{\Phi_0}\right) \cdot \sin\left(\frac{\pi \Phi_{\text{tot}}}{\Phi_0} + \delta_1\right)$ with $\Phi_{\text{tot}} = \Phi_a + LJ$ \downarrow $J = \frac{I_1 - I_2}{2} = \frac{I_0}{2}(\sin\delta_1 - \sin\delta_2) = I_0 \sin\left(\frac{\pi \Phi_{\text{tot}}}{\Phi_0}\right) \cdot \cos\left(\frac{\pi \Phi_{\text{tot}}}{\Phi_0} + \delta_1\right)$

must be solved self-consistently

simple analytic solutions for two limiting cases

a) negligible inductance:

if maximum flux induced by screening current

$$\Phi_{J,\max} = I_0 L \ll \frac{\Phi_0}{2} \quad \Longleftrightarrow \beta_L \equiv \frac{2LI_0}{\Phi_0} \ll 1 \quad \text{screening parameter}$$

$$\Longrightarrow \Phi_{\text{tot}} \approx \Phi_a$$

$$I \approx 2I_0 \cos\left(\frac{\pi \Phi_a}{\Phi_0}\right) \cdot \sin\left(\frac{\pi \Phi_a}{\Phi_0} + \delta_1\right)$$
maximum supercurrent I_c through the SQUID:

$$\Rightarrow \sin(\pi \frac{\Phi_a}{\Phi_0} + \delta_1) = \pm 1$$

$$I_c \approx 2I_0 \left|\cos\left(\frac{\pi \Phi_a}{\Phi_0}\right)\right|$$

$$I_{c}^{J_0} \left|\cos\left(\frac{\pi \Phi_a}{\Phi_0}\right)\right|$$

b) large inductance: $\beta_L \gg 1$

the applied flux is screened by the flux induced by $LJ = \frac{1}{\beta_L} \ll 1$ to minimize magnetic energy $L|J| \le \frac{\Phi_0}{2} \implies |J| \le \frac{\Phi_0}{2L} = \frac{\Phi_0}{2LI_0}I_0 \ll I_0$

• the effect of the induced circulating current J on δ_1 , δ_2 is small: $\delta_2-\delta_1pprox 0$

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array} \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

one finds for the maximum change of $I_{\rm c}$

$$\Delta I_{\rm c} \approx \frac{\Phi_0}{L} = \frac{2}{\beta_L} I_0 \ll 2I_0$$

or for the relative modulation depth

$$\frac{\Delta I_{\rm c}}{2I_0} \approx \frac{\Phi_0}{2I_0L} = \frac{1}{\beta_L} \ll 1$$

1

 Φ_{a}/Φ_{0}^{2}

General case:

from numerical simulations for

- symmetric dc SQUID
- at T=0 & sinusoidal CPR

Caution: $I_{c}(\Phi_{a})$ modified for asymmetric SQUIDs

B. Chesca, R. Kleiner & D. Koelle, SQUID Theory, Ch. 2 in The SQUID Handbook, Vol. I

D. Jetter, B.Sc. Thesis, Univ. Tübingen (2019)

... and deviations from sinusoidal CPR!

C.D. Tesche, J. Clarke, *dc* SQUID: Noise and *Optimization*, J. Low Temp. Phys. **29**, 301 (1977)

dc SQUID Basics: Dynamic Case

dc SQUID Basics: Dynmic Case

asymmetry: $I_{0,1} = I_0(1 - \alpha_I);$ $R_1 = R/(1 - \alpha_R);$ $C_1 = C(1 - \alpha_C)$ $I_{0,2} = I_0(1 + \alpha_I);$ $R_2 = R/(1 + \alpha_R);$ $C_2 = C(1 + \alpha_C)$ $R = 2R_1R_2/(R_1 + R_2)$ $C = (C_1 + C_2)/2$

normalization: currents *i*, *j* (I_0), voltage (I_0R), time ($\tau = \Phi_0/(2\pi I_0R)$), magnetic flux ϕ (Φ_0)

$$i_{1} = \frac{i}{2} + j = (1 - \alpha_{I}) \sin \delta_{1} + (1 - \alpha_{R})\dot{\delta}_{1} + \beta_{C}(1 - \alpha_{C})\ddot{\delta}_{1} + i_{N_{1}}$$

$$i_{2} = \frac{i}{2} - j = (1 + \alpha_{I}) \sin \delta_{2} + (1 + \alpha_{R})\dot{\delta}_{2} + \beta_{C}(1 + \alpha_{C})\ddot{\delta}_{2} + i_{N_{2}}$$

$$\delta_{2} - \delta_{1} = 2\pi(\phi_{a} + \frac{\beta_{L}j}{2}) \qquad v = \frac{\overline{\delta}_{1} + \overline{\delta}_{2}}{2}$$

$\frac{\text{dc SQUID Basics: Dynamic Case}}{\text{dc SQUID Potential}}$ with normalized circulating current $\frac{J}{I_0} \equiv j = \frac{2}{\pi\beta_L} \left(\frac{\delta_2 - \delta_1}{2} - \pi\phi_a \right)$

inserted into the normalized Eqs. of motion (for symmetric case):

$$\beta_C \dot{\delta}_k + \dot{\delta}_k = -\frac{\partial u_{dcsquid}}{\partial \delta_k} \quad (\text{with } k = 1, 2)$$
with the 2-dim. dc SQUID potential

$$E_J \equiv \frac{I_0 \Phi_0}{2\pi} \qquad \frac{U_{dcsquid}}{E_J} = u_{dcsquid} = \frac{2}{\pi} \frac{1}{\beta_L} \left(\frac{\delta_2 - \delta_1}{2} - \pi \phi_a \right)^2 - \frac{\cos \delta_1 - \cos \delta_2}{\text{Josephson energy}} - i \frac{\delta_1 + \delta_2}{2}$$
magnetic energy

$$\beta_L = \frac{E_J}{E_M} \qquad \phi_a = 0 \qquad i=0, \ \beta_L = 1 \qquad \phi_a = 1/2$$

$$\beta_L = \frac{E_J}{E_M} \qquad \phi_a = 0 \qquad i=0, \ \beta_L = 1 \qquad \phi_a = 1/2$$

dc SQUID: noise

 Φ_{a} noise voltage $V_{
m N}(t)$ with spectral power density of voltage noise $S_V(f)$ $V = V_{\rm dc} + V_{\rm N}$ equivalent noise flux - I_0 fluctuations 10⁰ Hz^{1/2}) - motion of Abrikosov vortices .**1√f** noise[¯] $\Phi_{\rm N}(t) = \frac{V_{\rm N}}{V_{\rm T}}$ $S_{\Phi_{10}}^{1/2}(\mu\Phi_{0}^{1/2})$ $S_{\Phi}(f) = \frac{S_V}{V_{\tau}^2}$ thermal white noise with equivalent spectral density of flux noise 10⁰ **10**¹ 10² 10³ 10^{4} \rightarrow rms flux noise $S_{\Phi}^{1/2} = S_V^{1/2}/V_{\Phi}$ units: $\Phi_0/\sqrt{\text{Hz}}$ f(Hz) fluctuation energy $\frac{\Phi_{\rm N}^2}{2L}$ energy resolution $\varepsilon = \frac{S_{\Phi}}{2I}$ units: J/\sqrt{Hz}

dc SQUID Basics: Thermal Fluctuations

thermal fluctuations at finite temperature T become important when $k_B T$ approaches

• the Josephson coupling energy $E_{\rm J} = \frac{I_0 \Phi_0}{2\pi}$ i.e. $\frac{k_{\rm B}T}{E_{\rm J}} = \Gamma = \frac{\frac{2\pi}{\Phi_0}k_{\rm B}T}{I_0} = \frac{I_{\rm th}}{I_0} \to 1$ • the characteristic magnetic energy $E_{\rm M} = \frac{E_{\rm J}}{\beta_L} = \frac{1}{2\pi}\frac{\Phi_0^2}{2L}$ i.e. $\frac{k_{\rm B}T}{E_{\rm M}} = \Gamma\beta_L = \frac{L}{\Phi_0^2/(4\pi k_{\rm B}T)} = \frac{L}{L_{\rm th}} \to 1$

regime of small thermal fluctuations:

$$\Gamma \ll 1 \qquad \implies I_0 \gg I_{\rm th} = \frac{2\pi}{\Phi_0} k_{\rm B} T \propto T \qquad \qquad \begin{array}{l} \text{for } T = 4.2 \text{ K: } I_{\rm th} \sim 0.18 \ \mu\text{A} \\ \text{for } T = 77 \text{ K: } I_{\rm th} \sim 2.3 \ \mu\text{A} \end{array}$$

$$\Gamma \beta_L \ll 1 \implies L \ll L_{\rm th} = \frac{\Phi_0^2}{4\pi k_{\rm B}T} \propto \frac{1}{T}$$

for T= 4.2 K: $L_{th} \sim 5.9 \text{ pH}$ for T = 77 K: $L_{th} \sim 320 \text{ pH}$

$$\Leftrightarrow LI_{\rm th} \ll \frac{\Phi_0}{2}$$

dc SQUID: thermal "white" noise VERSITAT

analysis based on numerical simulations (RCSJ model: solve coupled Langevin Eqs.) in the limit of small thermal fluctuations (at ~ 4 K):

EBERHARD KARLS

TÜBINGEN

$$\begin{array}{ll} \mbox{transfer function } V_{\Phi} \propto \frac{1}{1+\beta_L} & \mbox{optimum noise performance at } \beta_L \approx 1 \\ \mbox{for } \beta_L \approx 1; \ \Gamma \approx 1/20 \colon & V_{\Phi} \approx \frac{R}{L} \approx \frac{2I_0R}{\Phi_0} \\ S_V \approx 16k_{\rm B}TR & S_V^{1/2} \approx 15 \frac{{\rm pV}}{\sqrt{{\rm Hz}}} \times \sqrt{T[{\rm K}] \cdot R[\Omega]} \\ S_{\Phi} \approx 16k_{\rm B}T \frac{L^2}{R} & S_{\Phi}^{1/2} \approx 0.7 \frac{\mu\Phi_0}{\sqrt{{\rm Hz}}} \times \sqrt{\frac{T[{\rm K}]}{R[\Omega]}} \times L[100\,{\rm pH}] \\ \varepsilon \approx 9k_{\rm B}T \frac{L}{R} \approx \frac{9\Phi_0}{2} \frac{k_{\rm B}T}{I_0R} & \approx \underbrace{10^{-34}({\rm J/Hz})}_{\approx \hbar} \times \frac{T[{\rm K}]}{I_0R[{\rm mV}]} \end{array}$$

C.D. Tesche, J. Clarke, dc SQUID: Noise and Optimization, J. Low Temp. Phys. 29, 301 (1977)

dc SQUID: thermal "white" noise

analysis based on numerical simulations (RCSJ model: solve coupled Langevin Eqs.)

including large thermal fluctuations (~ 77 K):

EBERHARD KARLS

UNIVERSITÄT TÜBINGEN

D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, J. Clarke, Rev. Mod. Phys. **71**, 631 (1999) B. Chesca, R. Kleiner & D. Koelle, *SQUID Theory*, Ch. 2 in The SQUID Handbook, Vol. I (2004)

Outline

I. SQUIDs: Basics & principle of operation

II. Practical devices and readout

- **III. SQUID applications**
 - a. Magnetometry, Susceptometry
 - b. Biomagnetism: MEG, low-field MRI
 - c. Scanning SQUID microscopy
 - d. magnetic nanoparticle (MNP) detection

dc SQUID Readout Flux-Locked Loop (FLL)

flux-locked loop (FLL)

- \rightarrow linearizes output voltage
- \rightarrow maintains optimum working point

feedback flux $\Phi_{\mathrm{f}} = I_{\mathrm{f}} M_{\mathrm{f}}$ compensates $\delta \Phi_{\mathrm{a}}$

output signal:
$$V_{
m f}=rac{R_{
m f}}{M_{
m f}}\;\Phi_{
m f}\propto\delta\Phi_{
m a}$$

typical bandwidth: ~10 kHz ... ~10 MHz

D. Drung & M. Mück, *SQUID* Electronics, Chapter 4 in The SQUID Handbook, Vol. I

dc SQUID Readout APF & ac Flux Modulation

sensitivity can be limited by preamplifier (p.a.) noise $S_{V,{
m p.a.}}^{1/2}>S_{\Phi}^{1/2}\cdot V_{\Phi}$

<u>alternative readout schemes:</u>

additional positive feedback (APF)

enhances V_{Φ} to overcome p.a. noise

ac flux modulation

transformer enhances signal above p.a. noise level

D. Drung & M. Mück, *SQUID* Electronics, Ch. 4 in The SQUID Handbook, Vol. I D. Drung, *High-Tc and Low-Tc dc SQUID* Electronics, Supercond. Sci. Technol. **16**, 1320 (2003)

dc SQUID Readout: Bias Reversal

elimination of 1/f noise contribution from I_0 fluctuations

D. Drung, *High-Tc and Low-Tc dc SQUID* Electronics, Supercond. Sci. Technol. **16**, 1320 (2003) by reversing bias current (and bias flux, bias voltage) at reversal frequency $f_{\rm br}$ up to few 100 kHz

Examples: SQUID Structures

YBCO SQUID

Nb SQUID

sandwich-type trilayer Nb/HfTi/Nb junctions

solution: properly designed SQUID layouts and input circuit structures

R. Cantor & D. Koelle, *Practical dc SQUIDs: Configuration and Performance*, Chapter 5 in The SQUID Handbook, Vol. I

Washer SQUID

NIVERSITAT Superconducting Flux Transformer

Inductively Coupled SQUID Magnetometer

SQUID + flux transformer = Ketchen Magnetometer

multilayer structure

SQUID Magnetometer

SQUID Gradiometer

1. order gradiometer:

counter-wound pickup-loops:

insensitive against homogeneous disturbing fields !!

measures gradient dB/dz \rightarrow local signals at one loop

- I. SQUIDs: Basics & principle of operation
- **II.** Practical devices and readout
- **III. SQUID applications**
 - a. Magnetometry, Susceptometry
 - b. Biomagnetism: MEG, low-field MRI
 - c. Scanning SQUID microscopy
 - d. Magnetic nanoparticle (MNP) detection

What is a SQUID good for?

		<u>quantities</u>
•	Magnetometry, Susceptometry → materials-/geosciences, chemistry, physics	\rightarrow magnetization <i>M</i> \rightarrow magnetic susceptibility χ
	\rightarrow magnetic nanoparticles/molecules \rightarrow hands QUIDs	
•	Biomagnetism \rightarrow non-invasive imaging of brain and heart activity,	ightarrow I, B, $ abla B$
	ightarrow magnetic resonance imaging (MRI) at low magnetic fie	Ids $\rightarrow M$
•	Geophysics \rightarrow search for fossile or geothermal energy resources,	$\rightarrow B, \nabla B$
•	Non-destructive evaluation of materials → cracks or magnetic inclusions (airplane wheels, -turbing reinforced steel in bridges),	es, $\rightarrow I, B, \nabla B$
•	Metrology → voltmeter, amperemeter, noise thermometer,	$ ightarrow V_{ m dc}, V_{ m rf}$, I, T
•	Particle detectors (e.g. calorimeters)	$\rightarrow \delta \varepsilon, \delta T$
•	SQUID microscopy	$\rightarrow B, \Phi(x,y,z)$

IV.a Magnetometry, Susceptometry

EBERHARD KARLS

UNIVERSITÄT Tübingen

R. C. Black & F. C. Wellstood, *Measurements of Magnetism and Magnetic Properties of Matter*, Chapter 12 in *The SQUID Handbook, Vol. II*

IV.b Biomagnetism

detection of magnetic fields (currents, magnetic particles, nuclear spins) in living organisms, in particular humans

- Magneto-encephalograpy (MEG) → brain currents
- Magneto-cardiograpy (MCG) → heart currents
- Magneto-neurograpy (MNG) → action currents in nerves

determination of Fe-concentration in the liver

- Magneto-gastrography (MGG) & -enterography (MENG)
 - \rightarrow currents due to spontaneous activity of stomach & intestine muscles (MGG)
 - \rightarrow magnetic marker \rightarrow mobility/transport in stomach-intestine (MENG)
- Magnetic relaxation immunoassays (MARIA) \rightarrow magnetic relaxation of marker, coupled to antibodies

 \rightarrow detection of smallest concentrations of specific stubstances (hormone, virus, ...)

Low-field magnetic resonance imaging (MRI)

 \rightarrow simpler MRI systems; cancer diagnosis

J. Vrba, J. Nenonen & L. Trahms, *Biomagnetism*, Chapter11 in The SQUID Handbook, Vol. II

Detection of brain currents

CTF Systems Inc.: MEG Introduction: Theoretical Background (2001); http://www.ctf.com

MEG with SQUIDs

multichannel SQUID systems

EEG (Electro~)

SQUID system: >100 channels, He cooling (*T*=4.2K)

W. Buckel, R. Kleiner, Superconductivity, Wiley-VCH (2004)

Diagnosis of Focal Epilepsy

localized neural defect magnetic field pulses

J. Clarke, Scientific American 08/1994

Magnetic Resonance Imaging (MRI) in Low Magnetic Fields

conventional Tesla-MRI:

detection of magnetization $M \propto \mu_{\rm p} B_0 / k_{\rm B} T$ (proton spins μ_p in magnetic field B_0) at frequencies $\omega_0/2\pi = B_0 \cdot 42.6 \text{ MHz/T}$ with induction coils $V \propto dM/dt \propto \omega_0 B_0 \propto B_0^2$

precession with frequency

Siemens Healthcare MAGNETOM Area 1.5T

Tesla fields

enormously high requirements for homogeneity of B_0

SQUID-based MRI: $V \propto M \propto B_0$ \clubsuit (ultra-) low fields (\leq mT) 20 mm \tilde{O} \otimes B_0

prepolarization with extra coil or hyperpolarization of spins:

 \rightarrow M and V is independent of B_0 Mössle *et al.*, IEEE Trans. Appl. Supercond. **15**, 757 (2005)

 $B_0 = 132 \,\mu T$

3

M. Mössle,

100 mT

H₂0-columns

in Agarose-Gel

UC Berkeley

132 l

- + avoids artefacts from
 metals → monitoring of biopsies
- + enhanced image contrast at low fields/frequencies → cancer diagnosis
- + combine fMRI & MEG

IV.c Scanning SQUID Microscopy

• early results in 1990s: Fundamental studies on the order parameter symmetry of cuprate superconductors (Kirtley & Tsuei)

EBERHARD KARLS

UNIVERSITÄT Tübingen

Kirtley, Physica C 368, 55 (2002)

semifluxon in a YBCO π -loop

50 μm —— Tsuei &Kirtley, Rev. Mod. Phys. **72**, 969 (2000)

semifluxons in YBCO/Nb $0-\pi$ junctions

Hilgenkamp et al., Nature 422, 50 (2003)

UNIVERSITAT TÜBINGEN IV.c Scanning SQUID Microscopy

• today:

investigation of fundamental properties of a wide range of novel materials

Devidas et al., Sec. 1. *Scanning SQUID Microscopy* in Christensen *et al.*, 2024 *Roadmap on Magnetic Microscopy Techniques and Their Applications in Materials Science*, arXiv:2401.04793

See also: Marchiori *et al.*, *Nanoscale magnetic field imaging for 2D materials*, Nature Reviews Physics **4**, 49 (2022)

Conventional scanning SQUID -on-tip

N. Koshnick *et al.* APL **93** (2008) 243101

courtesy of J. Anahory, E. Zeldov, Weizman Inst. of Science

SQUID-on-tip (SOT) E. Zeldov (Weizman Inst.)

- Al, Pb, Nb, on apex of nanotip (quartz tube, diam. \geq 50 nm) \rightarrow cJJs
- fabrication by 3-step shadow evaporation \rightarrow no lithography steps required !

performance depends strongly on applied field

(no flux feedback to maintain optimum working point)

- → not easily applicable for magnetization reversal measurements
- spin sensitivity 0.38 $\mu_B/Hz^{1/2}$ (@ 0.5 T; for dipole @ loop center, \perp to loop)
- ~ 10 100 nm spatial resolution
 breakthrough for scanning
 SQUID microscopy !
- also nanoscale thermal imaging !!

exploits *T*-dependence of $I_c \rightarrow \text{sensitivity} < 1 \mu \text{K/Hz}^{1/2}$

SOT microscopy @ Basel (Poggio): Imaging FM nanotubes

Vasyukov et al., Nano Lett. 18 (2018)

SQUID-on-lever

improve surface approach for scanning SQUID microscopy

M. Wyss *et al.*, Magnetic, thermal, and topographic imaging with a nm-scale SQUID-on-cantilever scanning probe, Phys. Rev. Applied **17**, 034002 (2022)

IV.d nanoSQUIDs for Studies on Magnetic Nanoparticles (MNP)

strongly miniaturized SQUIDs can measure M(H) hysteresis loops of **individual** MNPs directly \rightarrow pioneered by W. Wernsdorfer in the 1990s

principle of detection:

- place particle on constriction in loop common approach: constriction-type JJs
- apply external magnetic field *H*
 (in the loop plane → no flux coupled to loop)
 → switch magnetic moment *µ*
- detect change of stray field of particle
 → magnetic flux change ΔΦ in the loop
 → voltage change ΔV across JJs

Wernsdorfer, Adv. Chem. Phys. 118, 99-190 (2001)

key requirements:
 → ultra-low SQUID noise
 → strong coupling
 → robust operation in strong & variable fields

nanoSQUIDs for MNP Studies: Spin sensitivity

sensitivity determined by

- flux noise: rms spectral density of flux noise $S^{1/2}_{\Phi}$ [Φ_0 /Hz^{1/2}]
- coupling factor $\phi_{\mu} = \frac{\text{magnetic flux } \Phi \text{ (coupled into SQUID loop)}}{\text{magnetic moment } \mu}$ $[\Phi_0/\mu_B]$ μ_B : Bohr magneton

depends on particle position, orientation of moment and SQUID geometry

spin sensitivity: $\frac{S_{\mu}^{1/2} = S_{\Phi}^{1/2}/\phi_{\mu}}{\text{units: } [\mu_{\text{B}}/\text{Hz}^{1/2}]} \text{ smallest amount of in 1 Hz bandwidth}$ smallest amount of spin flips detectable $S_{\mu}^{1/2} = \frac{\mu \Phi_0 / H z^{1/2}}{10 n \Phi_0 / \mu_D} = 100 \mu_B / H z^{1/2}$

improvements in minaturization & sensitivity

 $S_{\mu}^{1/2} < 1 \ \mu_{B}/Hz^{1/2}$ demonstrated with SOT → SQUID microscopy !

Vasyukov *et al.*, Nature Nano **8**, 639 (2013)

Granata & Vettoliere, Phys. Rep. 614, 1 (2016) Martínez-Pérez & Koelle, Phys. Sci. Rev. 2, 20175001 (2017)

Magnetization Reversal of Co MNPs

Martínez-Pérez et al., Supercond. Sci. Technol. 30, 024003 (2016)

EBERHARD KARLS

UNIVERSITÄT Tübingen

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Magnetization Reversal of Co MNPs

Magnetization Reversal of Co MNPs

Martínez-Pérez et al., Supercond. Sci. Technol. 30, 024003 (2016)

"Oh, no, he's quite harmless. ...

Just don't show any fear. ...

SQUIDs can **sense** fear."