

An Introduction to

Two-Dimensional Magnetic Materials

Marcos H. D. Guimarães

Zernike Institute for Advanced Materials University of Groningen The Netherlands

Magnetism in Two-Dimensions

- Show model Hamiltonians for magnetism
- Can be combined with other 2D materials
- Attractive to theoreticians (simple systems)

Some nice Reviews:

Nature **563**, 47 (2018) Nature Nanotech. **14**, 408 (2019) Science **363**, 706 (2019)

Question

Did you have an introductory (or advanced) course in magnetism?

www.pollev.com/guimaraes

Fundamentals of (2D) Magnetism

Recap: Magnetic Ordering

Ferromagnet

Antiferromagnet

 $\frac{\text{Ferromagnet}}{M \neq 0}$

 $\frac{\text{Antiferromagnet}}{M = 0}$

Ferrimagnet

Magnetic Domains

Domain wall

6

Magnetic Domain Walls

J. Franken, PhD Thesis (2014)

Important concept for topological magnetic structures,

e.g. skyrmions and chiral spin spirals.

Fert et al., Nat. Rev. Mat. (2017)

M-H Loops

M-H Loops

The area enclosed by the hysteresis loop corresponds to energy loss associated with hysteresis;

Moving, removing and introducing domain walls and reorienting magnetization cost energy!

Hard and soft magnets

A magnet having a hysteresis loop enclosing a large or small area is called hard or soft, respectively.

10

For applications the difference is particularly in the coercivivity, because both saturation and remnant magnetism are (usually) desired large.

Magnetic Layered Materials

CrX₃

- Semiconducting $(\tilde{E}_{BG} \sim 1.0 \text{ eV})$
- Really Air Unstable
- $T_c \sim 10$'s K
- (Anti)Ferromagnetic

M_xGe_yTe_z

- Metals (Fe/Co/Ni-based) and Semiconducting (Cr-based)
- A little Air Unstable
- T_c ~ 100's K
- Ferromagnetic (usually)

- Fe_xGeTe₂
- Ni₃GeTe₂

...

- $Cr_2Ge_2Te_6$
- Co_xFe_{3-x}GeTe₂

Magnetic Layered Materials

MPS_{3/4}

- Semiconductor ($E_{BG} \sim 1-2 \text{ eV}$)
- Air Stable
- T_c ~ 100's K
- Antiferromagnetic

- NiPS₃ FePS₃ CrPS₄
- MnPSe₃

. . .

۲

CrSBr

- Semiconductor ($E_{BG} \sim 1.5 \text{ eV}$)
- Air Stable
- T_c ~ 150 K
- Antierromagnetic

Magnetic Exchange

$$H_S = -J_{ij} (\boldsymbol{S}_i \cdot \boldsymbol{S}_j)$$

Anisotropic Exchange

Spin Dimensionality

Dictated by the anisotropy term: Strong out-of-plane anisotropy \rightarrow 1D Easy-plane anisotropy \rightarrow 2D Weak anisotropy \rightarrow 3D

Gibertini et al., Nat. Nanotech. 14, 408 (2019)

Mermin-Wagner Theorem

Mermin and Wagner, PRL 17, 1133–1136 (1966)

States that two-dimensional with a continuous symmetry cannot be ordered, or long-range order cannot exist in an *infinite* two-dimensional system in the

absence of *anisotropy*.

Can be calculated using the correlation between the directions of two spins:

$$c(\mathbf{r}_i - \mathbf{r}_j) = \langle e^{i(\phi(\mathbf{r}_i) - \phi(\mathbf{r}_j))} \rangle$$

Or, alternatively, the average magnetization of the system:

$$\langle |\boldsymbol{m}| \rangle = \left\langle \sqrt{\left(\frac{1}{N}\sum_{i} \boldsymbol{S}_{i}\right)^{2}} \right\rangle$$

Finite Size Effects

Jenkins et al., Nat. Comm. 13, 6917 (2022)

A magnetic dance: spin waves (magnons)

Density of States

How does the density of states depend on energy for a 2D system?

pollev.com/guimaraes

$$A - g \propto E^{1/2}$$
$$B - g \propto E^{3/2}$$
$$C - g \propto constant$$
$$D - g \propto E^{-1/2}$$

Gong et al., Science 363, 6428 (2019)

T = 0 K

T = 10 K

T = 0 K

Importance of Anisotropy

Dimensionality + Anisotropy

T = 10 K

"Seeing" magnetism: Magneto-Optics

$$\varepsilon = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{pmatrix}$$

Light-Matter Interaction in Magnetic Materials

$$\varepsilon = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & 0 \\ -\varepsilon_{xy} & \varepsilon_{xx} & 0 \\ 0 & 0 & \varepsilon_{xx} \end{pmatrix}$$

Eingenvectors:

$$\begin{pmatrix} E_x \\ E_y \end{pmatrix}_{\pm} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm i \end{pmatrix}$$

 σ_+ and σ_-

Optical conductivity: $\boldsymbol{\varepsilon} = \mathbf{1} + i \frac{4\pi}{\omega} \boldsymbol{\sigma}$ Eingenvalues: $\varepsilon_{\pm} = \varepsilon_{xx} \pm i\varepsilon_{xy}$

Refractive index: $n_{\pm} = n_{\pm} \pm i\eta_{\pm}$

Light-Matter Interaction in Magnetic Materials

Refractive index:

$$n_{\pm} = n_{\pm} \pm i\eta_{\pm}$$
 $|V\rangle = \frac{1}{2}(|\sigma_{+}\rangle + |\sigma_{-}\rangle)$ $|H\rangle = \frac{1}{2}(|\sigma_{+}\rangle - |\sigma_{-}\rangle)$

Kerr / Faraday Rotation

Different propagation speeds Different phase factor Rotation of the polarization

<u>Kerr / Faraday Ellipticity</u> <u>Magnetic Circular Dichroism</u>

Different absorption coefficients Different amplitudes Ellipticity of the polarization

Light-Matter Interaction in Magnetic Materials

Wu et al., PR Materials **6**, 014008 (2022) Molina-Sanchez et al., J. Mat. Chem. **8**, 8856 (2020)

"Seeing" magnetism with light: Magneto-Optic Kerr Effect

2D Magnets: Very large magneto-optical efficiencies!

From discovery to applications

First Observations

Cr₂Ge₂Te₆

2 layers

3 layers

layers

40 K

Burch et al., Nature **546**, 265 (2017)

28 K

22 K

Huang et al, Nature 546, 270 (2017)

First Observations

Lee et al., Nano Lett. 16, 7433 (2016)

CrI₃ – Layered AFM

Bulk is FERROMAGNETIC

Thin layers seem to be ANTIFERROMAGNETIC!

Phase transition for the crystal structure

Tunneling Through CrI₃ Layers

Klein et al, Science 360, 1218 (2018)

Tunneling Through CrI₃ Layers

Science **360**, 1218 (2018)

Tunneling Through CrI₃ Layers

Science 360, 1218 (2018)

Coffee, please!

Tuning the Interlayer Exchange in CrI₃

Nat. Mat. 18, 1303 (2019)

Tuning Magnetism in CrI₃ Layers with Pressure

How thin is `thin'?

pollev.com/guimaraes

C - K (magnetic anisotropy) D - All of the above

How thin is 'thin'?

It depends on $J_{\scriptscriptstyle \perp}$

Larger J_{\perp} will result on lower T_{C} when thinning

Normalized T_C : $T_C/_{T_C^{Bulk}}$

Nature Nanotech. 14, 408 (2019)

How thin is 'thin'?

$$\frac{T_C(n)}{T_C^{Bulk}} = 1 - \left[\frac{(N_0 + 1)}{2n}\right]^{\lambda}$$

For FGT: $N_0 \sim 5$ monolayers $\lambda \sim 1.66$ (3D Heisenberg)

Nature Comm. 9, 1554 (2018)

CrI₃ – Electric Field Effects

Nature Mat. 17, 406 (2018)

CrI₃ – Doping Effects

Nature Mat. 17, 406 (2018)

Gate Tunable Ferromagnetism in Fe₃GeTe₂

Nature 563, 94 (2018)

Gate Tunable Ferromagnetism in Fe₃GeTe₂

Nature **563**, 94 (2018)

Magnetism Well-Beyond Room Temperature

Magnetic Domains

Domain wall

51

Magnetic Structure of Fe₃GeTe₂

Nature Comm. 9, 1554 (2018)

Magnetic Structure of Fe₃GeTe₂

Nature Mat. 17, 778 (2018)

Why Chiral Spin Textures?

Topological charge, or Skyrmion number:

$$N_{sk} = \frac{1}{4\pi} \iint \vec{n} \cdot \left(\frac{\partial \vec{n}}{\partial x} \times \frac{\partial \vec{n}}{\partial y}\right) d^2 r$$

Shao et al., Nat. Comm. 14, 1355 (2023) 54

Magnetic Structure of Fe₃GeTe₂

SEM with Spin Polarization Sensitivity (SEMPA)

Meijer et al., Nano Lett. 20, 8563 (2020)

Meijer et al., Nano Lett. 20, 8563 (2020)

Chiral Spin Textures in Fe₃GeTe₂

Scanning transmission x-ray microscopy (STXM)

Zero-field cooling: spin spiral state

Field sweep: homogeneous magnetization state

Field cooling: skyrmions

57

 $0 \,\mathrm{mT}$

150 K

FC

Designed Spin Textures in CrI₃

Away from statics! Magnetization Dynamics

Ferromagnetic Resonance

$$\frac{d\boldsymbol{m}}{dt} = -\gamma \boldsymbol{m} \times \boldsymbol{H}_{eff} + \alpha \boldsymbol{m} \times \frac{d\boldsymbol{m}}{dt}$$

Assuming H_{ext} in the z direction and M at an angle θ_M from it:

$$f_{res} = \gamma \sqrt{H_{eff} (H_{eff} - H_{int} \sin^2(\theta_M))}$$

$$\boldsymbol{H_{eff}} = \boldsymbol{H_{ext}} + H_{int}\cos(\theta_M)\,\hat{\boldsymbol{z}}$$

$$H_{int} = \frac{2K_u}{\mu_0 M_s} - M_s$$

Optical-Excitation of Magnetization Dynamics in a 2D ferromagnet: Cr₂Ge₂Te₆

Zhang et al., APL **116**, 223103 (2020)

Optical-Excitation of Magnetization Dynamics in a 2D ferromagnet: Cr₂Ge₂Te₆

Magnetization Dynamics in bilayer CrI₃

Zhang et al., Nature Nanotech. 19, 838 (2020)

What happens?

pollev.com/guimaraes

- A Anisotropy and exchange change, hence the frequency changes.
- B Only the anisotropy changes, hence the amplitude of oscillation changes.
- C Only the exchange changes, hence the frequency changes.
- D None of the above.

Electric Control Over the Magnetization Dynamics

Zhang et al., Nature Nanotech. **19**, 838 (2020)

Electric Control Over the Magnetization Dynamics

 $(V_b + V_t)/2$

Electric Control Over the Magnetization Dynamics

Hendriks et al., Nat. Comm. **15**, 1298 (2024)

Ren et al., Sci. Rep. 11, 2744 (2021)

2D Magnets for Opto-Magnetics: Controlling Magnetism with Light

Linearly polarized ultrashort laser pulse

Coherent Opto-Magnetics: Inverse Cotton-Mouton Effect

Hendriks et al., Nat. Comm. 15, 1298 (2024)

Electric control over opto-magnetic effects

Hendriks et al., Nat. Comm. **15**, 1298 (2024)

FM ordering Excitons delocalized between layers

Wilson et al., Nature Mat. 20, 1657 (2021)

Magnon-Exciton Coupling

71

2D Materials: A (very!) large family

Over 2500 different materials!

Metals, Insulators, Semiconductors,

Superconductors, Semi-Metals,

Topological Insulators,

Ferroelectrics, Magnets, ...

New physics and emergent phenomena \rightarrow New possibilities!
Combining magnetism and superconductivity

Hysteretic Fraunhofer patters in a SC/FM/SC van der Waals heterostructure.

Ai et al., Nat. Comm. **12**, 6580 (2021)

Thanks for the invitation!

Hope you enjoyed!