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Content
• Introduction to superconductivity

– BCS, BdG, group theory

• Topological superconductivity
– Chiral superconductors, e.g. d+id’-wave superconductivity
– “Spinless” p-wave superconductors  Majorana fermions



Introduction to Superconductivity
What is it?

How do we describe it?



What is Superconductivity?

– Electric transport without resistance

– Meissner effect

Magnet

Superconductor



Superconductors

Conventional

Cuprates High 
pressure

PJRay, CC BY-SA 4.0

Iron-
based



How?
• But how do electrons move without resistance?

– All electrons in coherent quantum state with fixed 
phase (condensate)

• Bardeen-Cooper-Schrieffer (BCS) theory
– Condensation of electron (Cooper) pairs                

(with fermionic wave function)

– Many-body state, but possible to describe within 
mean-field theory



BCS Hamiltonian
Pairing Hamiltonian:

Mean-field theory with                            (pair amplitude at k)

Set order parameter



Kinetic (band) energy
Electron pairing

See e.g. Tinkham: Introduction to superconductivity

Ignore fluctuations

]



Matrix Formulation (BdG)

Define the Nambu spinor





constant
TRS: εk= ε−k

Bogliubov-de Gennes (BdG) formulation 
2x2 matrix problem

 Solve by finding eigenvalues and vectors 



Eigenstates = Quasiparticles
QP energies (eigenvalues):

QP operators (eigenvectors):
Bogoliubov

tranformation

P. Coleman: Introduction to Many Body Physics

Band structure
Density of  states (DOS)



Superconducting Order

Generalized order: fermionic, odd under particle exchange: 

 η even function in k

orbital spin

 η odd function in k

Fermi-Dirac 
distribution

Self-consistent order parameter:



Superconducting Pairing
Vk,k’ (and the band structure) determine the pairing symmetry, but 
often very hard to determine
• Lattice fluctations (phonon): spin-singlet s-wave  CONVENTIONAL

• Cuprate high-Tc superconductors: spin-singlet d-wave 

• Antiferromagnetic spin fluctuations: spin-singlet d-wave (extended s-wave)

• Ferromagnetic spin fluctuations: spin-triplet p-wave

• Strong on-site repulsion (Heisenberg interaction): spin-singlet d-wave

• …

Can we determine the possible pairing symmetries in a material 
without knowing Vk,k’?

Yes, by a general group theory analysis
See e.g. Sigrist and Ueda, RMP 63, 239 (1991)



General Solution
4x4 BdG equation:                                        

Self-consistency equation:
• Linear equation close to Tc

• Largest eigenvalue gives Tc

• Eigenfunction (∆) belongs to irreducible representation (irrep) of symmetry group

Possible SC symmetries belong to irreps of  symmetry group of  H

 SC state always breaks U(1), can also break
– Crystal lattice, spin-rotation, time-reversal, … symmetries

T



Basis Gap Functions: D4h

• D4h = tetragonal symmetry (cuprates with kz = 0)

Spin-singlet

Spin-triplet

s-wave, extended s-wave

d(xy)-wave
d(x2-y2)-wave

p(x)- and p(y)-wave degenerate

Sigrist and Ueda, RMP 63, 239 (1991)



Basis Gap Functions: D6h

• D6h = hexagonal symmetry (graphene, Bi2Se3 TIs with kz = 0,)

Spin-singlet

Spin-triplet

s-wave, extended s-wave

d(x2-y2)-wave and d(xy)-wave degenerate

Sigrist and Ueda, RMP 63, 239 (1991)



Multiple Order Parameters
SC state highly unconventional if multiple components at Tc

• Two-dimensional irreps often gives ∆1+i∆2 at T < Tc
– Only combination with full gap  Highest energy gain
– Singlet d(x2-y2)+id(xy)-wave for hexagonal/trigonal lattices

– Triplet (mz = 0) p(x)+ip(y)-wave for square lattices

Chiral superconductors
full energy gap, break time-reversal symmetry (TRS), topological

+

+

- -
+

+    -

-
+i



Introduction to Superconductivity
What is it?

A charged superfluid of  Cooper pairs (2 electrons) with fermionic character

Cooper pairs formed by effective attractive interaction

How do we describe it?
BCS theory (mean-field theory of  condensation)

BdG matrix formalism

Symmetry of  order parameter (group theory)



Topological Superconductivity
Introduction 

Chiral superconductors
Spin-singlet d+id’-wave (spin-triplet p+ip’-wave) superconductors

Spinless superconductors
Majorana fermions
Engineered systems



Topological Superconductivity
Introduction 

Chiral superconductors
Spin-singlet d+id’-wave (spin-triplet p+ip’-wave) superconductors

Spinless superconductors
Majorana fermions
Engineered systems



Topology

Topologically speaking: coffee cup = donut ≠ bun
1 hole 1 hole 0 hole



Classification
All forms of matter can be classified according to the 
symmetry they break

 Local order parameter

Except topological matter 
Topological insulators: 2005 (quantum Hall effect: 1980)

– Ordered but no symmetry breaking
– Topology of energy bands (or wave functions)

Global topological order

Topological superconductors have both!



Topological Matter
Topological states of matter have

• Bulk topological invariant
– Number classifying the topological class
– Only changes with the bulk gap closing

• Protected boundary states
– At any boundary to other topological or trivial region        

(vacuum, normal metal, s-wave SC = trivial topological order)

Bulk-boundary correspondence
# of  boundary states = change in topological invariant at boundary



Topological Classification (gapped systems)

Non-interacting (single-particle) insulators and superconductors: 10-fold way

Schnyder et al., PRB 78, 195125 (2008)

time-reversal

particle-hole

sublattice (chiral) Topological invariants



Superconductors

Schnyder et al., PRB 78, 195125 (2008)

Spinless p+ip’-wave in 1D  BDI 
because effective TRS



Topological Superconductivity
Introduction

Chiral superconductors
Spin-singlet d+id-wave (spin-triplet p+ip-wave) superconductors

Spinless superconductors
Majorana fermions
Engineered systems



d-wave SC from Strong Repulsion
Strong Coulomb repulsion, antiferromagnetic correlations 
(e.g. Hubbard model near half-filling)

 Spin-singlet pairing

 Double electron occupation unfavorable 
 No s-wave pairing

 Spin-singlet d-wave pairing                                                       
(best state = least number of nodes)

2D hexagonal lattice 

Spin-singlet d(x2-y2)+id(xy) pairing
(Only combination with full energy gap)

d(x2-y2)+id(xy)



Chiral  d+id’ SCs?
• Superconducting graphene

• SrPtAs

• NaxCoO2  yH2O

� β-MNCl

� κ-(BEDT-TTF)2X

• (111) bilayer SrIrO3

• In3Cu2VO9

• Twisted (~45º) cuprate bilayers

See also review: ABS and Honerkamp JPCM 26, 423201 (2014)



+

+

- -
+

+    -
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Bulk and Edge Properties
• Fully gapped bulk

• Two chiral (co-propagating) edge states per edge 

+i

π−π
k

left edge states
right edge states

ABS, PRL 109, 197001 (2012)



+

+

- -
+
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d+id’-wave SC breaks TRS  Chern number invariant 

Skyrmion number

Topological Invariant

Counts unit sphere area spanned by m as k covers the BZ
N

Bottom of  band: m ~ -z
Top of  band: m ~ z
 Non-zero N iff ∆ has finite winding along lines of  constant ε

d+id’-wave winds twice around Γ  |N|  = 2
 2 chiral edge states

ABS and Honerkamp JPCM 26, 423201 (2014)



Chiral p+ip SCs
Spin-triplet p(x)+ip(y)-wave spin-triplet, d = (0, 0, kx+iky)

• Fully gapped in the bulk

• Breaks TRS  finite Chern number/Skyrmion winding

+i

p(x)  +i p(y) 

p+ip’-wave winds once around Γ  |N|  = 1

 One chiral edge state per edge



Different Chiralities
• Bulk: d±id’-wave states are degenerate 
 One solution chosen spontaneously

• Domain walls: ∆N = 2 N 2N DW boundary states

• Edges/Defects: Both chiral solutions may appear
– Different edges are pair breaking for different parts of ∆

p(x)+ip(y):



Vortex in Chiral SC

(Abrikosov) vortex: Full 2π phase winding in 
dominant (∆+ ) chirality component

Chiral:
∆+ = d+id’
∆- = d-id’

Nodal:
d(x2-y2)
d(xy)

Holmvall and ABS, PRB 108, L100506 (2023)



Coreless Vortex

• Phase winding center in chiral component with no amplitude 
 coreless vortex (CV)

• Fractional vortices in nodal components at DW
Holmvall and ABS, PRB 108, L100506 (2023)

Chiral:
∆+ = d+id’
∆- = d-id’

Nodal:
d(x2-y2)
d(xy)



Changing Field Direction
Global phase winding in dominant chiral component: m 
Local phase winding in subdominant chiral component: p = m + 2N

Antiparallel CV: m = -4, p = 0 Parallel CV: m = 4, p = 8

Positive magnetic field (m < 0) Negative magnetic field (m > 0)

Sauls and Eschrig, NJP 11, 075008 (2009); Holmvall and ABS, PRB 108, L100506 (2023)



Topological Superconductivity
Chiral superconductors

Spin-singlet d+id’-wave (spin-triplet p+ip’-wave) superconductors

Appear often for 2D irreps
Fully gapped bulk
Finite Chern number N, set by in-plane phase winding of  ∆ 
Break TRS, preserve at least Sz symmetry
Chiral edge states crossing bulk gap, # = N
Host coreless vortices



Topological Superconductivity
Introduction

Chiral superconductors
Spin-singlet d+id’-wave (spin-triplet p+ip’-wave) superconductors

Spinless superconductors
Majorana fermions
Engineered systems



“Spinless” p+ip’ Superconductor
• Spinless superconductor  p-wave pairing

• No known intrinsic “spinless” SC

• Multiple proposals for engineered “spinless” p+ip’
superconductors last ~ 10 years
– 1D spinless ∆ ~ k   (class BDI)
– 2D spinless ∆ ~ kx+iky (class D)

Can be topological superconductors
Topological boundary states are Majorana Fermions (MFs)

1D: Localized zero-energy end states

2D: Dispersive edge modes or localized 
zero-energy vortex states



Schrödinger, Dirac, and Majorana
Schrödinger (1925)

Dirac (1928)

• Spin-1/2
• Electron & positron (hole)

Majorana (1937)
4x4 complex matrices

4x4 imaginary matrices

• Particle = Antiparticle: 

• Electron “=“ 2 Majorana fermions:



Majorana Fermions
New particle ~ ½ electron
• Emergent particle 

• Appears in pairs

Non-Abelian statistics in 2D 

 Robust quantum computation by braiding

Condensed 
matter systems 

MF in vortex coreMF on sample edge

Quantum gate operation 
= particle braiding



Quasiparticles in a superconductor:
• Part electron and part hole

• Mixed spin-up and spin-down

 E = 0 states are Majorana fermions:               (if we ignore spin)

But …
• Superconductors often have an energy gap

– Topological SCs have E = 0 boundary states

• E = 0 states are often spin-degenerate (2 Majorana 1 electron)

 “Spinless” topological superconductor for MFs

Excitations in Superconductors

+ =
+1    +      -2     =    -1

h e



Kitaev’s 1D Toy Model
1D chain of spinless electrons with superconducting pairing

i =  1          2           3       ….         i-1         i i+1      …           N

Nearest neighbor 
hopping

Spinless p-wave pairingChemical potential

Kitaev, arXiv:cond-mat/0010440 (2001) 



Majorana Basis

Change basis
Majorana fermions

i =  1          2           3       ….          i-1        i i+1      …          N

A:

B:



Trivial Phase

i =  1          2           3       ….         i-1         i i+1      …           N

A:

B:

Topological trivial phase: ∆ = t = 0, µ < 0 

Unique ground state
• Vacuum state for electrons
• Finite bulk gap (|µ| lowest excitation energy)



Non-Trivial Phase

i =  1          2           3       ….         i-1         i i+1      …           N

A:

B:

Topological non-trivial phase: µ = 0, ∆ = -t ≠ 0 

Free MF

Free MF

Degenerate ground state
• Finite bulk gap
• Zero-energy MFs at end points



How can we get “½ electron” in the BdG formalism?

Never if

 Not in spin-degenerate (e.g. chiral p+ip’ or d+id’) superconductors

But if

1 electron represented by 2 eigenvector components

 MF if E=0 eigenstate has no spatial overlap with other states

Majorana Fermions in BdG



SOC Semiconductors
Spin-orbit coupled (SOC) semiconductor + magnetic field

4x4 BdG description needed due to SOC + Zeeman field
Spinless p+ip’ superconductor with MFs if|Vz|>|∆|

Semiconductor, 
spin degenerate

Spin-orbit (Rashba) 
coupling (e.g. InAs)

Zeeman split bands

Conventional s-wave pairing

2D: Sau et al. PRL 104, 040502 (2010). 1D: Lutchyn et al. PRL 105, 077001 (2010), Oreg et al. PRL 104, 077002 (2010)



Experimental Hunt in Nanowires

1D InSb nanowire          
(Semiconductor with strong SOC)

+   s-wave superconductor

+   Magnetic field

Mourik et al., Science 336, 1003 (2012)

MFs (?)

MFs?

Conductance through wire



Nanowires with Hard Gaps
1D InAs nanowire          

+   Al superconductor

+   Magnetic field

Hard 
SC gap

Deng et al., Science 354, 1557 (2016)

Topological phase with MF (?)

Conductance at different gate biases 

Only Andreev bound states

Excited states



Is it a Majorana?

How to distinguish MFs?
– Stable zero-energy peak
– Quantized conductance 
– Bulk gap closing
– …

Problem:

Interfaces/edges/impurities often host trivial (accidental) 
zero-energy Andreev bound states (ABS)

Zhang et al., arXiv:2101.11456, see also Prada et al., Nat. Rev. Phys. 2, 575 (2020)

Not unique 
to MBS

MFs (?)



Nanowire + Superconductor

s-wave SC

NW

MBS beyond topological 
phase transition (TPT) at Bc

MFs

MFMF



Nanowire + Superconductor

Heavily modified effective 
chemical potential (and SOC) 

in NW

Awoga, Cayao, and ABS, PRL 123, 117001 (2019), see also Reeg et al. PRB 97, 165425 (2018)

s-wave SC

NW



Short SNS Junction

Quantum dot (QD) or barrier emerges 
spontaneously in short NW junctions

Awoga, Cayao, and ABS, PRL 123, 117001 (2019)

QD

Barrier

Ideal

S SN



False MFs in QD Regime

Energy spectrum of  junction

Ideal Barrier QD

Zero-energy QD states before TPT 
 false MFs

MFs

TPT

MFs

Awoga, Cayao, and ABS, PRL 123, 117001 (2019)



False MFs in QD Regime

Zero-energy (trivial) QD states 
always in strong coupling regime

Awoga, Cayao, and ABS, PRL 123, 117001 (2019)



Hunt with Magnetic Atoms

Pb substrate
(SC with strong SOC)

+  Fe ad-atoms

Nadj-Perge et al., Science 346, 602 (2014), Jeon et al., Science 358, 772 (2017)

MFs (?)

Also: MFs with predicted spin-polarization



Magnetic Atoms on Superconductors
Magnetic atoms on a SOC superconductor

Nadj-Perge et al., Science 346, 6209 (2014), Li et al., Nat. Commun. 7, 12297 (2016)

SOC superconductor

Magnetic atoms on sites a 
(to 1st approximation) 



Flexible Setup

Single magnetic impurity

1D ferromagnetic wire 2D ferromagnetic island

MF wire 
end state

MF vortex 
core state

Circulating 
currents

PRL 115, 116602 
(2015) 

Self-consistent solution for the superconducting order parameter

SOC superconductor



Ferromagnet Atom Chain Network

Björnson and ABS, PRB 94, 100501(R) (2016) 

Zero-energy MFs at odd-wire junctions (black)   

No subgap states at even-wire junctions (red)

Wire network for more unique signature of MFs:

B



Odd- and Even-Wire Junctions

Only clear subgap 
states are MFs at 

odd-wire junctions 
MF wire end states

Björnson and ABS, PRB 94, 100501(R) (2016) 

LDOS along upper wire segment



Topological Superconductivity
Spinless superconductors

Prototype: Kitaev model for 1D spinless SC
Materials: SOC + magnetism + s-wave SC
Majorana fermion: 
• Non-local, “½ electron”
• Zero-energy topological boundary state in spinless SCs

• Protected by energy gap
• Note: not all zero-energy states in SCs are MFs



Summary
• Introduction to superconductivity

– BCS, BdG, group theory

• Topological superconductivity
– Chiral superconductvity: p+ip’- and d+id’-wave symmetry

• Appears often in 2D irreps
• Topology set by Chern number (winding of order parameter)
• Chiral (electronic) edge states

– Spinless topological superconductivity
• SOC + magnetism + s-wave superconductivity
• Zero-energy edge state = Majorana fermion





General Hamiltonian
General Hamiltonian:

Mean-field order :





Matrix Formulation
4-component notation (Nambu):



Spin-singlet pairing:

Spin-triplet pairing:

mz = 0:

mz = 1:

T

ψ even 
function of  k

d vector odd 
function of  k



General Solution
QP energy (eigenvalue):

Self-consistency equation, linear close to Tc:
Finite q = non-unitary

Possible SC symmetries belong to irreps of  symmetry group of  H

 SC state always breaks U(1), can also break
– Crystal lattice, spin-rotation, time-reversal, … symmetries

• Largest eigenvalue gives Tc
• Eigenfunction (∆) belongs to irreducible 

representation (irrep) of  symmetry group



Graphene a d+id’ SC?
Honeycomb lattice

Diverging DOS 
 favorable for SC

Band structure with van Hove singularities

Pairing from repulsive 
interactions
• Strong interactions [1]

• Perturbative RG [2]

• Functional RG [3]

+

+

- -
+

+    -

-
+i

d(x2-y2) +i d(xy) 

[1]: ABS and Doniach, PRB 75, 134512 (2007), [2]: Nandkishore et al., Nat. Phys. 8, 158 (2012), [3]: Kiesel et al., PRB 86, 020507 (2012)

1st BZ 



Twisted Bilayer Graphene

Small “magic” angles 
low energy flat bands

Bistritzer&MacDonald, PNAS 108, 12233 (2011); Cao et al, Nature 556, 43 (2018); Nature  556, 80 (2018); Balents et al, Nat. Phys. 16,  725 (2020)  

Supercell moiré 
pattern

Superconducting domes 
throughout moiré flat band
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