Topological Superconductivity

Annica Black-Schaffer

annica.black-schaffer@physics.uu.se

UPPSALA UNIVERSITET

Quantum Matter Theory

European School on Superconductivity and Magnetism Spain, 22nd April 2024

University founded 1477

Ångström laboratory

Open postdoc positions in fall

UNIVERSITET

Acknowledgements

Kristofer Björnson, Tomas Löthman, Johann Schmidt, Ola Awoga, Suhas Nahas, Andreas Theiler, Lucas Casa, Florian Kayatz, Adrien Bouhon, Dushko Kuzmanovski, Lucia Komendova, Mahdi Mashkoori, Jorge Cayao, Fariborz Parhizgar, Christopher Triola, Paramita Dutta, Debmalya Chakraborty, Iman Mahyaeh, Patric Holmvall, Rodrigo Arouca, Tanay Nag, Quentin Marsal, Arnob Ghosh, Ankita Bhattacharya, Aksel Kobialka, Umberto Borla, Thanos Tsintzis, Raphael Teixeira, Anton Gregefalk

Collaborators:

A. Balatsky (Nordita), J. Linder (NTNU), J. Fransson (UU), K. Le Hur (Ecole Polytechnique),
C. Honerkamp (Aachen), R. Aguado (Madrid), L. da Silva (Sao Paulo), M. Fogelström (Chalmers), S. Doniach (Stanford), C. Ast (MPI-FKF), F. Lombardi (Chalmers), A. Kantian (Heriot-Watt), Y. Tanaka (Nagoya), B. Sanyal (UU), H. Suderow, P. Burset (UA Madrid), Cristina Bena, Catherin Pepin (Paris-Saclay)

Funding:

- Introduction to superconductivity
 - BCS, BdG, group theory

- Topological superconductivity
 - Chiral superconductors, e.g. d+id'-wave superconductivity
 - "Spinless" p-wave superconductors \rightarrow Majorana fermions

Introduction to Superconductivity

What is it?

How do we describe it?

What is Superconductivity?

- Electric transport without resistance

– Meissner effect

Superconductors

PJRay, CC BY-SA 4.0

- But how do electrons move without resistance?
 - All electrons in coherent quantum state with fixed phase (condensate)

$$\Psi = \Delta_0 e^{i \varphi}$$

- Bardeen-Cooper-Schrieffer (BCS) theory
 - Condensation of electron (Cooper) pairs (with fermionic wave function)
 - Many-body state, but possible to describe within mean-field theory

BCS Hamiltonian

Pairing Hamiltonian:

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}\sigma} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow}$$
Electron pairing
Kinetic (band) energy
$$V_{\mathbf{k},\mathbf{k}'} = \begin{cases} -g_0/V, & (|\epsilon_{\mathbf{k}}| < \omega_D) \\ 0 & (\text{otherwise}) \end{cases}$$
Mean-field theory with $F_{\mathbf{k}} = \langle c_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} \rangle$ (pair amplitude at \mathbf{k})

$$\sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow} = \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} [(c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} - F^{\dagger}_{\mathbf{k}}) + F^{\dagger}_{\mathbf{k}}] [(c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow} - F_{\mathbf{k}'}) + F_{\mathbf{k}'}] \approx \int_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} (F_{\mathbf{k}'} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} + F^{\dagger}_{\mathbf{k}} c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow} - F^{\dagger}_{\mathbf{k}} F_{\mathbf{k}'}]$$

$$\sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} (F_{\mathbf{k}'} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} + F^{\dagger}_{\mathbf{k}} c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow} - F^{\dagger}_{\mathbf{k}} F_{\mathbf{k}'}]$$

$$\sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} (F_{\mathbf{k}'} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} + F^{\dagger}_{\mathbf{k}} c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow} - F^{\dagger}_{\mathbf{k}} F_{\mathbf{k}'}]$$

Set order parameter
$$\Delta_{\mathbf{k}} = \sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} F_{\mathbf{k}'} = \sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \langle c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow} \rangle$$

 $\rightarrow H_{\mathrm{MF}} = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{\mathbf{k}} \Delta_{\mathbf{k}} c_{-\mathbf{k}\downarrow}^{\dagger} c_{\mathbf{k}\uparrow}^{\dagger} + \mathrm{H.c.} + \sum_{\mathbf{k}} \frac{V}{g_0} \Delta_{\mathbf{k}}^{\dagger} \Delta_{\mathbf{k}}$

See e.g. Tinkham: Introduction to superconductivity

Matrix Formulation (BdG)

Define the Nambu spinor
$$\psi_{\mathbf{k}} = \begin{pmatrix} c_{\mathbf{k}\uparrow} \\ c^{\dagger}_{-\mathbf{k}\downarrow} \end{pmatrix} \quad \psi^{\dagger}_{\mathbf{k}} = \begin{pmatrix} c^{\dagger}_{\mathbf{k}\uparrow}, c_{-\mathbf{k}\downarrow} \end{pmatrix}$$

$$\rightarrow \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} (c^{\dagger}_{\mathbf{k}\uparrow} c_{\mathbf{k}\uparrow} - c_{-\mathbf{k}\downarrow} c^{\dagger}_{-\mathbf{k}\downarrow} + 1) = (c^{\dagger}_{\mathbf{k}\uparrow}, c_{-\mathbf{k}\downarrow}) \begin{bmatrix} \epsilon_{\mathbf{k}} & 0 \\ 0 & -\epsilon_{\mathbf{k}} \end{bmatrix} \begin{pmatrix} c_{\mathbf{k}\uparrow} \\ \bar{c}^{\dagger}_{-\mathbf{k}\downarrow} \end{pmatrix} + \sum_{\mathbf{k}} \epsilon_{\mathbf{k}}$$
constant TRS: $\varepsilon_{\mathbf{k}} = \varepsilon_{-\mathbf{k}}$

$$\rightarrow \epsilon_{\mathbf{k}} \sum_{\sigma} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \left[\bar{\Delta} c_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} + c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} \Delta \right] = \left(c^{\dagger}_{\mathbf{k}\uparrow}, \ c_{-\mathbf{k}\downarrow} \right) \begin{bmatrix} \epsilon_{\mathbf{k}} & \Delta \\ \bar{\Delta} & -\epsilon_{\mathbf{k}} \end{bmatrix} \begin{pmatrix} c_{\mathbf{k}\uparrow} \\ c^{\dagger}_{-\mathbf{k}\downarrow} \end{pmatrix}$$

Bogliubov-de Gennes (BdG) formulation

2x2 matrix problem → Solve by finding eigenvalues and vectors

Eigenstates = Quasiparticles

QP energies (eigenvalues): $E_{\mathbf{k}} = \pm \sqrt{\epsilon_{\mathbf{k}}^2 + |\Delta_{\mathbf{k}}|^2}$

QP operators (eigenvectors):

$$= \begin{cases} a^{\dagger}_{\mathbf{k}\uparrow} = \psi^{\dagger}_{\mathbf{k}} \cdot \begin{pmatrix} u_{\mathbf{k}} \\ v_{\mathbf{k}} \end{pmatrix} = c^{\dagger}_{\mathbf{k}\uparrow} u_{\mathbf{k}} + c_{-\mathbf{k}\downarrow} v_{\mathbf{k}} & \text{Bog} \\ a_{-\mathbf{k}\downarrow} = \psi^{\dagger}_{\mathbf{k}} \cdot \begin{pmatrix} -v_{\mathbf{k}}^{*} \\ u_{\mathbf{k}}^{*} \end{pmatrix} = c_{-\mathbf{k}\downarrow} u_{\mathbf{k}}^{*} - c^{\dagger}_{\mathbf{k}\uparrow} v_{\mathbf{k}}^{*} & \text{tranfe} \\ u_{\mathbf{k}} = \sqrt{\frac{1}{2} \left[1 + \frac{\epsilon_{\mathbf{k}}}{E_{\mathbf{k}}} \right]} & v_{\mathbf{k}} = \sqrt{\frac{1}{2} \left[1 - \frac{\epsilon_{\mathbf{k}}}{E_{\mathbf{k}}} \right]} \end{cases}$$

1 1

Bogoliubov tranformation

P. Coleman: Introduction to Many Body Physics

Superconducting Order

Self-consistent order parameter:

$$\Delta_{\mathbf{k}} = \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \langle c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow} \rangle = \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} u_{\mathbf{k}'} v_{\mathbf{k}'}^* \langle a_{\mathbf{k}'\uparrow}^{\dagger} a_{\mathbf{k}'\uparrow} + a_{-\mathbf{k}'\downarrow}^{\dagger} a_{\mathbf{k}'\downarrow} - 1 \rangle$$

$$\langle a_{\mathbf{k}'\sigma}^{\dagger} a_{\mathbf{k}'\sigma} \rangle = (1 + e^{E_{\mathbf{k}'}/k_BT})^{-1}$$
Fermi-Dirac distribution

Generalized order: fermionic, odd under particle exchange:

$$\chi_{\alpha\beta} \rightarrow \begin{cases} \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) & (S=0) & \rightarrow \eta \text{ even function in } \mathbf{k} \\ |\uparrow\uparrow\rangle & (S=1, S_z=1) \\ \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) & (S=1, S_z=0) \\ |\downarrow\downarrow\rangle & (S=1, S_z=-1) \end{cases} \rightarrow \eta \text{ odd function in } \mathbf{k} \end{cases}$$

Superconducting Pairing

 $V_{k,k}$ (and the band structure) determine the pairing symmetry, but often very hard to determine

- Lattice fluctations (phonon): spin-singlet s-wave **CONVENTIONAL**
- Cuprate high-Tc superconductors: spin-singlet *d*-wave
- Antiferromagnetic spin fluctuations: spin-singlet *d*-wave (extended *s*-wave)
- Ferromagnetic spin fluctuations: spin-triplet *p*-wave
- Strong on-site repulsion (Heisenberg interaction): spin-singlet *d*-wave

Can we determine the possible pairing symmetries in a material without knowing $V_{k,k'}$?

Yes, by a general group theory analysis See e.g. Sigrist and Ueda, RMP **63**, 239 (1991)

General Solution

4x4 BdG equation:
$$\tilde{\mathcal{H}} = \mathbf{a}_{\mathbf{k}}^{\dagger} \begin{pmatrix} \varepsilon(\mathbf{k}) & \hat{\Delta}(\mathbf{k}) \\ \hat{\Delta}^{\dagger}(\mathbf{k}) & -\varepsilon(\mathbf{k}) \end{pmatrix} \mathbf{a}_{\mathbf{k}}$$
$$\begin{pmatrix} \mathbf{a}_{\mathbf{k}} = (a_{\mathbf{k}\uparrow}, a_{\mathbf{k}\downarrow}, a_{-\mathbf{k}\uparrow}^{\dagger}, a_{-\mathbf{k}\downarrow}^{\dagger})^{\mathsf{T}} \end{pmatrix}$$

Self-consistency equation: $v\Delta_{s_1s_2}(\mathbf{k}) = -\sum_{s_3s_4} \langle V_{s_2s_1s_3s_4}(\mathbf{k},\mathbf{k}')\Delta_{s_3s_4}(\mathbf{k}') \rangle_{\mathbf{k}'}$

- Linear equation close to T_c
 - Largest eigenvalue gives T_c
 - Eigenfunction (Δ) belongs to irreducible representation (irrep) of symmetry group

→ Possible SC symmetries belong to **irreps of symmetry group of H**

- \rightarrow SC state always breaks U(1), can also break
 - Crystal lattice, spin-rotation, time-reversal, ... symmetries

Basis Gap Functions: D_{4h}

• D_{4h} = tetragonal symmetry (cuprates with $k_z = 0$)

Irreducible representation Γ	Basis function
Γ_{1}^{+} Γ_{2}^{+} Γ_{3}^{+} Γ_{4}^{+} Γ_{5}^{+}	(a) Spin-singlet $\psi(\Gamma_1^+;\mathbf{k})=1, k_x^2+k_y^2, k_z^2 s$ -wave, extended <i>s</i> -wave $\psi(\Gamma_2^+;\mathbf{k})=k_x k_y (k_x^2-k_y^2)$ $\psi(\Gamma_3^+;\mathbf{k})=k_x^2-k_y^2 d(x^2-y^2)$ -wave $\psi(\Gamma_4^+;\mathbf{k})=k_x k_y d(xy)$ -wave $\psi(\Gamma_5^+,1;\mathbf{k})=k_x k_z$ $\psi(\Gamma_5^+,2;\mathbf{k})=k_y k_z$
Γ_{1}^{-} Γ_{2}^{-} Γ_{3}^{-} Γ_{4}^{-} Γ_{5}^{-}	(b) Spin-triplet $d(\Gamma_{1}^{-};\mathbf{k}) = \hat{\mathbf{x}}k_{x} + \hat{\mathbf{y}}k_{y}, \hat{\mathbf{z}}k_{z}$ $d(\Gamma_{2}^{-};\mathbf{k}) = \hat{\mathbf{x}}k_{y} - \hat{\mathbf{y}}k_{x}$ $d(\Gamma_{3}^{-};\mathbf{k}) = \hat{\mathbf{x}}k_{x} - \hat{\mathbf{y}}k_{x}$ $d(\Gamma_{4}^{-};\mathbf{k}) = \hat{\mathbf{x}}k_{y} + \hat{\mathbf{y}}k_{x}$ $d(\Gamma_{5}^{-},1;\mathbf{k}) = \hat{\mathbf{x}}k_{z}, \hat{\mathbf{z}}k_{x}$ $d(\Gamma_{5}^{-},2;\mathbf{k}) = \hat{\mathbf{y}}k_{z}, \hat{\mathbf{z}}k_{y}$ $p(\mathbf{x})$ - and $p(\mathbf{y})$ -wave degenerated

Basis Gap Functions: D_{6h}

• D_{6h} = hexagonal symmetry (graphene, Bi_2Se_3 TIs with $k_z = 0$,)

Irreducible	
representation Γ	Basis functions
Γ_1^+ Γ_2^+ Γ_3^+ Γ_4^+	(a) Spin-singlet $\psi(\Gamma_1^+;\mathbf{k}) = 1, \ k_x^2 + k_y^2, \ k_z^2$ <i>s</i> -wave, extended <i>s</i> -wave $\psi(\Gamma_2^+;\mathbf{k}) = k_x k_y (k_x^2 - 3k_y^2) (k_y^2 - 3k_x^2)$ $\psi(\Gamma_3^+;\mathbf{k}) = k_z k_x (k_x^2 - 3k_y^2)$ $\psi(\Gamma_4^+;\mathbf{k}) = k_z k_y (k_y^2 - 3k_x^2)$
Γ_5^+	$\psi(\Gamma_5^+, 1; \mathbf{k}) = k_x k_z$ $\psi(\Gamma_5^+, 2; \mathbf{k}) = k_y k_z$
Γ_6^+	$\psi(\Gamma_6^+, 1; \mathbf{k}) = k_x^2 - k_y^2 \qquad \qquad d(x^2 - y^2) \text{-wave and } d(xy) \text{-wave degenerate}$ $\psi(\Gamma_6^+, 2; \mathbf{k}) = 2k_x k_y \qquad \qquad$
Γ_1^-	$\mathbf{d}(\Gamma_1^-;\mathbf{k}) = \mathbf{\hat{x}}k_x + \mathbf{\hat{y}}k_y, \mathbf{\hat{z}}k_z$
Γ_2^-	$\mathbf{d}(\Gamma_2^-;\mathbf{k}) = \mathbf{\hat{x}} k_y - \mathbf{\hat{y}} k_x$
Γ_3^-	$\mathbf{d}(\Gamma_3^-;\mathbf{k}) = \mathbf{\hat{z}}k_x(k_x^2 - 3k_y^2), \\ k_z[(k_x^2 - k_y^2)\mathbf{\hat{x}} - 2k_xk_y\mathbf{\hat{y}}]$
Γ_4^-	$\mathbf{d}(\Gamma_4^-;\mathbf{k}) = \widehat{\mathbf{z}}k_y(k_y^2 - 3k_x^2), \\ k_z[(k_y^2 - k_x^2)\widehat{\mathbf{y}} - 2k_xk_y\widehat{\mathbf{x}}]$
Γ_5^-	$\mathbf{d}(\Gamma_5^-, 1; \mathbf{k}) = \mathbf{\hat{x}} k_z, \mathbf{\hat{z}} k_x$ $\mathbf{d}(\Gamma_5^-, 2; \mathbf{k}) = \mathbf{\hat{y}} k_z, \mathbf{\hat{z}} k_y$
Γ_6^-	$\mathbf{d}(\Gamma_6^-, 1; \mathbf{k}) = \mathbf{\hat{x}} k_x - \mathbf{\hat{y}} k_y$ $\mathbf{d}(\Gamma_6^-, 2; \mathbf{k}) = \mathbf{\hat{x}} k_y - \mathbf{\hat{y}} k_x$

Sigrist and Ueda, RMP 63, 239 (1991)

Multiple Order Parameters

SC state highly unconventional if multiple components at T_c

- Two-dimensional irreps often gives $\Delta_1 + i \Delta_2$ at $T < T_c$
 - Only combination with full gap \rightarrow Highest energy gain
 - Singlet $d(x^2-y^2)+id(xy)$ -wave for hexagonal/trigonal lattices

- Triplet ($m_z = 0$) p(x)+ip(y)-wave for square lattices

Chiral superconductors

full energy gap, break time-reversal symmetry (TRS), topological

Introduction to Superconductivity

What is it?

A charged superfluid of Cooper pairs (2 electrons) with fermionic character

Cooper pairs formed by effective attractive interaction

How do we describe it?

BCS theory (mean-field theory of condensation)

BdG matrix formalism

Symmetry of order parameter (group theory)

UPPSALA UNIVERSITET

Topological Superconductivity

Introduction

Chiral superconductors Spin-singlet *d*+i*d*'-wave (spin-triplet *p*+i*p*'-wave) superconductors

Spinless superconductors Majorana fermions Engineered systems

UPPSALA UNIVERSITET

Topological Superconductivity

Introduction

Chiral superconductors Spin-singlet *d*+i*d*'-wave (spin-triplet *p*+i*p*'-wave) superconductors

Spinless superconductors Majorana fermions Engineered systems

Topology

Topologically speaking: coffee cup = donut \neq bun 1 hole 1 hole 0 hole

Classification

All forms of matter can be classified according to the symmetry they break

\rightarrow Local order parameter

Except topological matter

Topological insulators: 2005 (quantum Hall effect: 1980)

- Ordered but no symmetry breaking
- Topology of energy bands (or wave functions)
- \rightarrow Global topological order

Topological superconductors have both!

Topological Matter

Topological states of matter have

- Bulk topological invariant
 - Number classifying the topological class
 - Only changes with the bulk gap closing
- Protected boundary states
 - At any boundary to other topological or trivial region (vacuum, normal metal, s-wave SC = trivial topological order)

Bulk-boundary correspondence

of boundary states = change in topological invariant at boundary

Topological Classification (gapped systems)

Non-interacting (single-particle) insulators and superconductors: 10-fold way

		time-revers:	al subl	iral) Topo	Topological invariants		
		TRS	PHS particle-hole	SLS	d=1	d=2	<i>d</i> =3
Standard	A (unitary)	0	0	0	-	Z	-
(Wigner-Dyson)	AI (orthogonal)	+1	0	0	-	-	-
	AII (symplectic)	-1	0	0	-	\mathbb{Z}_2	\mathbb{Z}_2
Chiral	AIII (chiral unitary)	0	0	1	Z	-	Z
(sublattice)	BDI (chiral orthogonal)	+1	+1	1	$\mathbb Z$	-	-
	CII (chiral symplectic)	-1	-1	1	Z	-	\mathbb{Z}_2
BdG	D	0	+1	0	\mathbb{Z}_2	Z	-
	С	0	-1	0	-	Z	-
	DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	Z
	CI	+1	-1	1	-	-	Z

Superconductors

AZ class	SU(2)	TRS	Examples in two dimensions
D	×	×	Spinless chiral $(p \pm ip)$ wave
DIII	×	0	Superposition of $(p+ip)$ and $(p-ip)$ waves
Α	Δ	×	Spinful chiral $(p \pm ip)$ wave
AIII	Δ	0	Spinful p_x or p_y wave
С	0	×	$(d \pm id)$ wave
CI	0	0	$d_{x^2-y^2}$ or d_{xy} wave

		TRS	PHS	SLS	<i>d</i> =1	<i>d</i> =2	<i>d</i> =3
Standard	A (unitary)	0	0	0	-	Z	-
(Wigner-Dyson)	AI (orthogonal)	+1	0	0	-	-	-
	AII (symplectic)	-1	0	0	-	\mathbb{Z}_2	\mathbb{Z}_2
Chiral	AIII (chiral unitary)	0	0	1	Z	-	Z
(sublattice)	BDI (chiral orthogonal)	+1	+1	1	Z	-	-
	CII (chiral symplectic)	-1	-1	1	Z	-	\mathbb{Z}_2
BdG	D	0	+1	0	\mathbb{Z}_2	Z	-
	С	0	-1	0	-	Z	-
	DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	Z
	CI	+1	-1	1	-	-	Z

Spinless p+ip'-wave in 1D \rightarrow BDI because effective TRS

Schnyder et al., PRB 78, 195125 (2008)

UPPSALA UNIVERSITET

Topological Superconductivity

Introduction

Chiral superconductors Spin-singlet *d*+i*d*-wave (spin-triplet *p*+i*p*-wave) superconductors

Spinless superconductors Majorana fermions Engineered systems

d-wave SC from Strong Repulsion

Strong Coulomb repulsion, antiferromagnetic correlations (e.g. Hubbard model near half-filling)

- \rightarrow Spin-singlet pairing
- \rightarrow Double electron occupation unfavorable
 - \rightarrow No *s*-wave pairing
- Spin-singlet *d*-wave pairing (best state = least number of nodes)
- 2D hexagonal lattice \rightarrow Spin-singlet $d(x^2-y^2)+id(xy)$ pairing

(Only combination with full energy gap)

Irreducible	Pagia functions
epresentation 1	Dasis functions
	(a)
Γ_1^+	$\psi(\Gamma_1^+;\mathbf{k})=1, \ k_x^2+k_y^2, \ k_z^2$
Γ_2^+	$\psi(\Gamma_2^+;\mathbf{k}) = k_x k_y (k_x^2 - 3k_y^2) (k_y^2 - 3k_x^2)$
Γ_3^+	$\psi(\Gamma_3^+;\mathbf{k}) = k_z k_x (k_x^2 - 3k_y^2)$
Γ_4^+	$\psi(\Gamma_4^+;\mathbf{k}) = k_z k_y (k_y^2 - 3k_x^2)$
Γ_5^+	$\psi(\Gamma_5^+, 1; \mathbf{k}) = k_x k_z$
	$\psi(\Gamma_5^+,2;\mathbf{k}) = k_y k_z$
Γ^+_{c}	$\psi(\Gamma^+, 1; \mathbf{k}) = k^2 - k^2 \mathcal{U}_{-2} - 2 \mathcal{U}_{-2}$
- 6	$\psi(\Gamma_{6},2;\mathbf{k})=2k_{x}k_{y}\mathcal{A}(X^{2}-Y^{2})\pm 1\mathcal{A}(X)$
	(b)
Γ_{τ}^{-}	$\mathbf{d}(\mathbf{\Gamma}_{\mathbf{i}}^{-};\mathbf{k}) = \mathbf{\hat{k}}k_{\mathbf{i}} + \mathbf{\hat{v}}k_{\mathbf{i}}\cdot\mathbf{\hat{z}}k_{\mathbf{i}}$
Γ_{2}^{1}	$\mathbf{d}(\Gamma_{2};\mathbf{k}) = \mathbf{\hat{x}}k_{x} - \mathbf{\hat{y}}k_{x}$
Γ_{3}^{2}	$\mathbf{d}(\Gamma_{2}^{-};\mathbf{k}) = \hat{\mathbf{z}}k_{x}(k_{x}^{2} - 3k_{y}^{2}).$
3	$k_z[(k_x^2-k_y^2)\hat{\mathbf{x}}-2k_xk_y\hat{\mathbf{y}}]$
Γ_4^-	$\mathbf{d}(\Gamma_4^-;\mathbf{k}) = \mathbf{\hat{z}}k_y(k_y^2 - 3k_x^2),$
	$k_z[(k_y^2-k_x^2)\mathbf{\hat{y}}-2k_xk_y\mathbf{\hat{x}}]$
Γ_5^-	$\mathbf{d}(\Gamma_{5},1;\mathbf{k})=\mathbf{\hat{x}}k_{z},\mathbf{\hat{z}}k_{z}$
2	$\mathbf{d}(\Gamma_5^-, 2; \mathbf{k}) = \hat{\mathbf{y}} k_z, \hat{\mathbf{z}} k_y$
Γ^{-}	$d(\Gamma^{-} 1)k - 2k - 2k$
L 6	$\mathbf{u}(1_{6},1,\mathbf{K}) - \mathbf{X}K_{x} - \mathbf{y}K_{y}$ $\mathbf{d}(\mathbf{\Gamma}^{-},2;\mathbf{k}) - \mathbf{\hat{x}}k - \mathbf{\hat{x}}k$
	$\mathbf{u}(1_{6}, 2, \mathbf{K}) - \mathbf{X} \mathbf{K}_{y} = \mathbf{y} \mathbf{K}_{x}$

Chiral d+id'SCs?

- Superconducting graphene
- SrPtAs
- $Na_xCoO_2 \bullet yH_2O$
- $\Box \beta$ -MNCl
- $\Box \kappa$ -(BEDT-TTF)₂X
- (111) bilayer SrIrO₃
- $In_3Cu_2VO_9$
- Twisted (~45°) cuprate bilayers

See also review: ABS and Honerkamp JPCM 26, 423201 (2014)

Bulk and Edge Properties

• Fully gapped bulk $E_{QP}(\mathbf{k}) = \sqrt{\varepsilon(\mathbf{k})^2 + |\Delta(\mathbf{k})|^2}$

• Two chiral (co-propagating) edge states per edge

ABS, PRL 109, 197001 (2012)

Topological Invariant

d+id'-wave SC breaks TRS \rightarrow Chern number invariant

$$\mathcal{N} = \frac{1}{4\pi} \int_{\mathrm{BZ}} \mathrm{d}^2 k \, \hat{\mathbf{m}} \cdot \left(\frac{\partial \hat{\mathbf{m}}}{\partial k_x} \times \frac{\partial \hat{\mathbf{m}}}{\partial k_y} \right)$$

Skyrmion number
$$\hat{\mathbf{m}} = \frac{1}{\sqrt{\varepsilon(\mathbf{k})^2 + |\Delta(\mathbf{k})|^2}} \begin{pmatrix} \operatorname{Re} \Delta(\mathbf{k}) \\ \operatorname{Im} \Delta(\mathbf{k}) \\ \varepsilon(\mathbf{k}) \end{pmatrix}$$

Counts unit sphere area spanned by **m** as **k** covers the BZ

Bottom of band: m ~ -z
Top of band: m ~ z
→ Non-zero N iff Δ has finite winding along lines of constant ε

d+id'-wave winds twice around $\Gamma \rightarrow |\mathbf{N}| = 2$ $\rightarrow 2$ chiral edge states

C = 0

ABS and Honerkamp JPCM 26, 423201 (2014)

Chiral p+ip SCs

Spin-triplet p(x)+ip(y)-wave spin-triplet, $\mathbf{d} = (0, 0, k_x+ik_y)$

• Fully gapped in the bulk $E_{\rm QP}(\mathbf{k}) = \sqrt{\varepsilon(\mathbf{k})^2 + |\Delta(\mathbf{k})|^2}$

$$p(x) + i p(y)$$

• Breaks TRS \rightarrow finite Chern number/Skyrmion winding

$$\mathcal{N} = \frac{1}{4\pi} \int_{\mathrm{BZ}} \mathrm{d}^2 k \, \hat{\mathbf{m}} \cdot \left(\frac{\partial \hat{\mathbf{m}}}{\partial k_x} \times \frac{\partial \hat{\mathbf{m}}}{\partial k_y} \right)$$
$$\hat{\mathbf{m}} = \frac{1}{\sqrt{\varepsilon(\mathbf{k})^2 + |\Delta(\mathbf{k})|^2}} \begin{pmatrix} \operatorname{Re} \Delta(\mathbf{k}) \\ \operatorname{Im} \Delta(\mathbf{k}) \\ \varepsilon(\mathbf{k}) \end{pmatrix}$$

p+ip'-wave winds once around $\Gamma \rightarrow |\mathbf{N}| = 1$

 \rightarrow One chiral edge state per edge

Different Chiralities

- Bulk: *d*±i*d*'-wave states are degenerate
 → One solution chosen spontaneously
- Domain walls: $\Delta N = 2 N \rightarrow 2N$ DW boundary states

Edges/Defects: Both chiral solutions may appear
 Different edges are pair breaking for different parts of Δ

Vortex in Chiral SC

(Abrikosov) vortex: Full 2π phase winding in dominant (Δ_+) chirality component

Holmvall and ABS, PRB 108, L100506 (2023)

Coreless Vortex

- Phase winding center in chiral component with no amplitude
 → coreless vortex (CV)
- Fractional vortices in nodal components at DW

Holmvall and ABS, PRB 108, L100506 (2023)

Changing Field Direction

Global phase winding in dominant chiral component: mLocal phase winding in subdominant chiral component: p = m + 2N

Sauls and Eschrig, NJP 11, 075008 (2009); Holmvall and ABS, PRB 108, L100506 (2023)

UNIVERSITET

Topological Superconductivity

Chiral superconductors

Spin-singlet d+id'-wave (spin-triplet p+ip'-wave) superconductors

- Appear often for 2D irreps
- Fully gapped bulk
- Finite Chern number *N*, set by in-plane phase winding of Δ
- Break TRS, preserve at least S_z symmetry
- Chiral edge states crossing bulk gap, # = N
- Host coreless vortices

UPPSALA UNIVERSITET

Topological Superconductivity

Introduction

Chiral superconductors Spin-singlet *d*+i*d*'-wave (spin-triplet *p*+i*p*'-wave) superconductors

Spinless superconductors Majorana fermions Engineered systems

"Spinless" p+ip'Superconductor

- Spinless superconductor $\rightarrow p$ -wave pairing
- No known intrinsic "spinless" SC
- Multiple proposals for engineered "spinless" *p*+i*p*' superconductors last ~ 10 years
 - 1D spinless $\Delta \sim k$ (class BDI)
 - 2D spinless $\Delta \sim k_x + ik_y$ (class D)

Can be topological superconductors

Topological boundary states are Majorana Fermions (MFs) 1D: Localized zero-energy end states 2D: Dispersive edge modes or localized zero-energy vortex states

Schrödinger, Dirac, and Majorana

- Particle = Antiparticle: $\gamma^{\dagger} = \gamma$
- Electron "=" 2 Majorana fermions: $c^{\dagger} = \gamma_1 + i \gamma_2$

Majorana Fermions

New particle ~ $\frac{1}{2}$ electron

- Emergent particle
- Appears in pairs

Condensed matter systems

Non-Abelian statistics in 2D

➔ Robust quantum computation by braiding

Quantum gate operation = particle braiding

Excitations in Superconductors

Quasiparticles in a superconductor:

- Part electron and part hole
- Mixed spin-up and spin-down

$$\begin{cases} a = uc_{\uparrow}^{\dagger} + vc_{\downarrow} \\ a^{\dagger} = u^{*}c_{\uparrow} + v^{*}c_{\downarrow}^{\dagger} \\ |v_{\mathbf{k}}|^{2} = 1 - |u_{\mathbf{k}}|^{2} = \frac{1}{2} \left(1 - \frac{\varepsilon_{\mathbf{k}}}{E_{\mathbf{k}}}\right) \end{cases}$$

 $\begin{pmatrix}
h + \bullet \bullet \\
+1 + -2 = -1
\end{pmatrix}$

 \rightarrow E = 0 states are Majorana fermions: $\gamma^{\dagger} = \gamma$ (if we ignore spin)

But ...

- Superconductors often have an energy gap
 Topological SCs have E = 0 boundary states
- E = 0 states are often spin-degenerate (2 Majorana \rightarrow 1 electron)

→ "Spinless" topological superconductor for MFs

Kitaev's 1D Toy Model

1D chain of spinless electrons with superconducting pairing

Majorana Basis

$$H = -\mu \sum_{i} c_{i}^{\dagger} c_{i} - \frac{1}{2} \sum_{i} t c_{i}^{\dagger} c_{i+1} + \Delta c_{i} c_{i+1} + \text{H.c.}$$

$$c_{i} = \frac{1}{2} (\gamma_{i}^{B} + i \gamma_{i}^{A}) \longrightarrow \begin{array}{l} (\gamma_{i}^{\alpha})^{\dagger} = \gamma_{i}^{\alpha} \\ \{\gamma_{i}^{\alpha}, \gamma_{j}^{\beta}\} = 2\delta_{ij}\delta_{\alpha\beta} \\ \text{Majorana fermions} \end{array}$$

Change basis

Trivial Phase

$$H = -\frac{\mu}{2} \sum_{i=1}^{N} (1 + i\gamma_{i}^{B}\gamma_{i}^{A}) - \frac{i}{4} \sum_{i=1}^{N-1} \left[(\Delta + t)\gamma_{i}^{B}\gamma_{i+1}^{A} + (\Delta - t)\gamma_{i}^{A}\gamma_{i+1}^{B} \right]$$

Topological trivial phase: $\Delta = t = 0, \mu < 0$

Unique ground state

- Vacuum state for electrons
- Finite bulk gap ($|\mu|$ lowest excitation energy)

Non-Trivial Phase

$$H = -\frac{\mu}{2} \sum_{i=1}^{N} (1 + i\gamma_{i}^{B}\gamma_{i}^{A}) - \frac{i}{4} \sum_{i=1}^{N-1} \left[(\Delta + t)\gamma_{i}^{B}\gamma_{i+1}^{A} + (\Delta - t)\gamma_{i}^{A}\gamma_{i+1}^{B} \right]$$

Topological non-trivial phase: $\mu = 0, \Delta = -t \neq 0$

An Majorana Fermions in BdG

How can we get "1/2 electron" in the BdG formalism?

Never if
$$\epsilon_{\mathbf{k}} \sum_{\sigma} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \left[\bar{\Delta} c_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} + c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} \Delta \right] = \left(c^{\dagger}_{\mathbf{k}\uparrow}, c_{-\mathbf{k}\downarrow} \right) \begin{bmatrix} \epsilon_{\mathbf{k}} & \Delta \\ \bar{\Delta} & -\epsilon_{\mathbf{k}} \end{bmatrix} \begin{pmatrix} c_{\mathbf{k}\uparrow} \\ c^{\dagger}_{-\mathbf{k}\downarrow} \end{pmatrix}$$

→ Not in spin-degenerate (e.g. chiral p+ip' or d+id') superconductors

But if
$$\tilde{\mathcal{H}} = \mathbf{a}_{\mathbf{k}}^{\dagger} \begin{pmatrix} \varepsilon(\mathbf{k}) & \hat{\Delta}(\mathbf{k}) \\ \hat{\Delta}^{\dagger}(\mathbf{k}) & -\varepsilon(\mathbf{k}) \end{pmatrix} \mathbf{a}_{\mathbf{k}} \quad \left[\mathbf{a}_{\mathbf{k}} = (a_{\mathbf{k}\uparrow}, a_{\mathbf{k}\downarrow}, a_{-\mathbf{k}\uparrow}^{\dagger}, a_{-\mathbf{k}\downarrow}^{\dagger}) \right]$$

1 electron represented by 2 eigenvector components

 \rightarrow MF if E=0 eigenstate has no spatial overlap with other states

SOC Semiconductors

Spin-orbit coupled (SOC) semiconductor + magnetic field

4x4 BdG description needed due to SOC + Zeeman field Spinless p+ip' superconductor with MFs if $|V_z| > |\Delta|$

2D: Sau et al. PRL 104, 040502 (2010). 1D: Lutchyn et al. PRL 105, 077001 (2010), Oreg et al. PRL 104, 077002 (2010)

+

Experimental Hunt in Nanowires

1D InSb nanowire (Semiconductor with strong SOC)

+ *s*-wave superconductor

Magnetic field

Mourik et al., Science 336, 1003 (2012)

Nanowires with Hard Gaps

1D InAs nanowire + Al superconductor GC gap

+ Magnetic field

Conductance at different gate biases

Is it a Majorana?

Problem:

Interfaces/edges/impurities often host trivial (accidental) zero-energy Andreev bound states (ABS)

Nanowire + Superconductor

$$H = H_{\rm SC} + H_{\rm NW} + H_{\rm SC-NW}^{\Gamma}$$

Heavily modified effective chemical potential (and SOC) in NW

Short SNS Junction

spontaneously in short NW junctions

Awoga, Cayao, and ABS, PRL 123, 117001 (2019)

False MFs in QD Regime

Energy spectrum of junction

Zero-energy QD states before TPT → false MFs

Awoga, Cayao, and ABS, PRL 123, 117001 (2019)

False MFs in QD Regime

Zero-energy (trivial) QD states always in strong coupling regime

Awoga, Cayao, and ABS, PRL 123, 117001 (2019)

Hunt with Magnetic Atoms

Pb substrate (SC with strong SOC)

+ Fe ad-atoms

Also: MFs with predicted spin-polarization

Nadj-Perge et al., Science 346, 602 (2014), Jeon et al., Science 358, 772 (2017)

Magnetic Atoms on Superconductors

Magnetic atoms on a SOC superconductor

$$\mathcal{H} = \mathcal{H}_{kin} + \mathcal{H}_{SO} + \mathcal{H}_{sc} + \mathcal{H}_{V_z}$$

SOC superconductor

$$\begin{aligned} \mathcal{H}_{kin} &= -t \sum_{\langle \mathbf{i}, \mathbf{j} \rangle, \sigma} c^{\dagger}_{\mathbf{i}\sigma} c_{\mathbf{j}\sigma} - \mu \sum_{\mathbf{i}, \sigma} c^{\dagger}_{\mathbf{i}\sigma} c_{\mathbf{i}\sigma} \\ \mathcal{H}_{SO} &= -\frac{\lambda}{2} \sum_{\mathbf{i}} \left[\left(c^{\dagger}_{\mathbf{i}-\hat{x}\downarrow} c_{\mathbf{i}\uparrow} - c^{\dagger}_{\mathbf{i}+\hat{x}\downarrow} c_{\mathbf{i}\uparrow} \right) \right. \\ &\left. + i \left(c^{\dagger}_{\mathbf{i}-\hat{y}\downarrow} c_{\mathbf{i}\uparrow} - c^{\dagger}_{\mathbf{i}+\hat{y}\downarrow} c_{\mathbf{i}\uparrow} \right) + \mathrm{H.c.} \right] \\ \mathcal{H}_{sc} &= \sum_{\mathbf{i}} \Delta_{\mathbf{i}} \left(c^{\dagger}_{\mathbf{i}\uparrow} c^{\dagger}_{\mathbf{i}\downarrow} + \mathrm{H.c.} \right) \end{aligned}$$

$$\begin{split} & \text{Magnetic atoms on sites } \mathbf{a} \\ & \text{(to 1st approximation)} \end{split} \\ & \mathcal{H}_{V_z} = -\sum_{\mathbf{a},\sigma,\sigma'} \left(V_z(\mathbf{a}) \hat{\mathbf{n}} \cdot \boldsymbol{\sigma} \right)_{\sigma\sigma'} c^{\dagger}_{\mathbf{a}\sigma} c_{\mathbf{a}\sigma'} \end{split}$$

Nadj-Perge et al., Science 346, 6209 (2014), Li et al., Nat. Commun. 7, 12297 (2016)

Flexible Setup

Self-consistent solution for the superconducting order parameter $\begin{bmatrix} \Delta_{\mathbf{i}} = -V_{sc} \langle c_{\mathbf{i}\downarrow} c_{\mathbf{i}\uparrow} \rangle \end{bmatrix}$ Single magnetic impurity

Ferromagnet Atom Chain Network

Wire network for more unique signature of MFs:

Odd- and Even-Wire Junctions

UPPSALA UNIVERSITET

Topological Superconductivity

Spinless superconductors

Prototype: Kitaev model for 1D spinless SC Materials: SOC + magnetism + *s*-wave SC Majorana fermion:

- Non-local, "¹/₂ electron"
- Zero-energy topological boundary state in spinless SCs
 - Protected by energy gap
 - Note: not all zero-energy states in SCs are MFs

- Introduction to superconductivity
 - BCS, BdG, group theory
- Topological superconductivity
 - Chiral superconductvity: p+ip'- and d+id'-wave symmetry
 - Appears often in 2D irreps
 - Topology set by Chern number (winding of order parameter)
 - Chiral (electronic) edge states
 - Spinless topological superconductivity
 - SOC + magnetism + *s*-wave superconductivity
 - Zero-energy edge state = Majorana fermion

UPPSALA UNIVERSITET

General Hamiltonian

General Hamiltonian:
$$\mathcal{H} = \sum_{\mathbf{k},s} \varepsilon(\mathbf{k}) a_{\mathbf{k}s}^{\dagger} a_{\mathbf{k}s}$$
$$+ \frac{1}{2} \sum_{\mathbf{k},\mathbf{k}',s_1,s_2,s_3,s_4} V_{s_1s_2s_3s_4}(\mathbf{k},\mathbf{k}') a_{-\mathbf{k}s_1}^{\dagger} a_{\mathbf{k}s_2}^{\dagger} a_{\mathbf{k}'s_3} a_{-\mathbf{k}'s_4}$$

Mean-field order :
$$\Delta_{ss'}(\mathbf{k}) = -\sum_{\mathbf{k}', s_3, s_4} V_{s'ss_3s_4}(\mathbf{k}, \mathbf{k'}) \langle a_{\mathbf{k}'s_3} a_{-\mathbf{k}'s_4} \rangle$$

$$\rightarrow \widetilde{\mathcal{H}} = \sum_{\mathbf{k},s} \varepsilon(\mathbf{k}) a_{\mathbf{k}s}^{\dagger} a_{\mathbf{k}s} + \frac{1}{2} \sum_{\mathbf{k},s_1,s_2} \left[\Delta_{s_1 s_2}(\mathbf{k}) a_{\mathbf{k}s_1}^{\dagger} a_{-\mathbf{k}s_2}^{\dagger} - \Delta_{s_1 s_2}^{\ast}(-\mathbf{k}) a_{-\mathbf{k}s_1} a_{\mathbf{k}s_2} \right]$$

Matrix Formulation

4-component notation (Nambu): $\mathbf{a}_{\mathbf{k}} = (a_{\mathbf{k}\uparrow}, a_{\mathbf{k}\downarrow}, a_{-\mathbf{k}\uparrow}^{\dagger}, a_{-\mathbf{k}\downarrow}^{\dagger})^{\mathsf{T}}$

$$\rightarrow \tilde{\mathcal{H}} = \mathbf{a}_{\mathbf{k}}^{\dagger} \begin{pmatrix} \varepsilon(\mathbf{k})\sigma_{0} & \hat{\Delta}(\mathbf{k}) \\ \hat{\Delta}^{\dagger}(\mathbf{k}) & -\varepsilon(\mathbf{k})\sigma_{0} \end{pmatrix} \mathbf{a}_{\mathbf{k}}$$

Spin-singlet pairing:
$$\widehat{\Delta}(\mathbf{k}) = i \widehat{\sigma}_{y} \psi(\mathbf{k}) = \begin{bmatrix} 0 & \psi(\mathbf{k}) \\ -\psi(\mathbf{k}) & 0 \end{bmatrix}$$
 ψ even
 $\left[\psi(\mathbf{k}) [c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} - c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger}] \right]$

Spin-triplet pairing: $\hat{\Delta}(\mathbf{k}) = i(\mathbf{d}(\mathbf{k}) \cdot \hat{\boldsymbol{\sigma}}) \hat{\boldsymbol{\sigma}}_{y}$

$$= \begin{bmatrix} -d_x(\mathbf{k}) + id_y(\mathbf{k}) & d_z(\mathbf{k}) \\ d_z(\mathbf{k}) & d_x(\mathbf{k}) + id_y(\mathbf{k}) \end{bmatrix}$$

 $\begin{array}{l} d \; \text{vector} \; \text{odd} \\ \text{function} \; \text{of} \; k \end{array}$

$$\begin{pmatrix} \mathbf{m}_{z} = 0: & d_{z}(\mathbf{k})[c_{\mathbf{k}\uparrow}^{\dagger}c_{-\mathbf{k}\downarrow}^{\dagger} + c_{\mathbf{k}\uparrow}^{\dagger}c_{-\mathbf{k}\downarrow}^{\dagger}] \\ \mathbf{m}_{z} = 1: & [-d_{x}(\mathbf{k}) + id_{y}(\mathbf{k})]c_{\mathbf{k}\uparrow}^{\dagger}c_{-\mathbf{k}\uparrow}^{\dagger} \end{pmatrix}$$

General Solution

QP energy (eigenvalue): $E_{\mathbf{k}} = \sqrt{\varepsilon(\mathbf{k})^2 + |\psi(\mathbf{k})|^2}$ $E_{\mathbf{k}} = \sqrt{\varepsilon(\mathbf{k})^2 + |\mathbf{d}(\mathbf{k})|^2 \pm \mathbf{q}(\mathbf{k})|}$

$$\begin{pmatrix}
\widehat{\Delta}\widehat{\Delta}^{\dagger} = |\mathbf{d}|^{2}\widehat{\sigma}_{0} + \mathbf{q}\cdot\widehat{\sigma} \\
\mathbf{q} = i(\mathbf{d} \times \mathbf{d}^{*}) \\
\text{Finite } \mathbf{q} = \text{non-unitary}
\end{pmatrix}$$

Self-consistency equation, linear close to T_c:

$$v\Delta_{s_1s_2}(\mathbf{k}) = -\sum_{s_3s_4} \left\langle V_{s_2s_1s_3s_4}(\mathbf{k},\mathbf{k}')\Delta_{s_3s_4}(\mathbf{k}')\right\rangle_{\mathbf{k}'}$$
$$\frac{1}{v} = N(0) \int_0^{\varepsilon_c} d\varepsilon \frac{\tanh\left[\frac{\beta_c\varepsilon(k)}{2}\right]}{\varepsilon(\mathbf{k})} = \ln(1.14\beta_c\varepsilon_c)$$

- Largest eigenvalue gives T_c
- Eigenfunction (Δ) belongs to irreducible representation (irrep) of symmetry group

→ Possible SC symmetries belong to irreps of symmetry group of H

- \rightarrow SC state always breaks U(1), can also break
 - Crystal lattice, spin-rotation, time-reversal, ... symmetries

Graphene a d+id'SC?

Honeycomb lattice

Band structure with van Hove singularities

Pairing from repulsive interactions

- Strong interactions [1]
- Perturbative RG [2]
- Functional RG [3]

[1]: ABS and Doniach, PRB 75, 134512 (2007), [2]: Nandkishore et al., Nat. Phys. 8, 158 (2012), [3]: Kiesel et al., PRB 86, 020507 (2012)

Twisted Bilayer Graphene

Supercell moiré pattern

Small "magic" angles → low energy flat bands

Superconducting domes throughout moiré flat band

Bistritzer&MacDonald, PNAS 108, 12233 (2011); Cao et al, Nature 556, 43 (2018); Nature 556, 80 (2018); Balents et al, Nat. Phys. 16, 725 (2020)